Feedback-directed Random
Test Generation

(to appear in ICSE 2007)

Carlos Pacheco Shuvendu Lahiri
Michael Ernst Thomas Ball
MIT Microsoft Research

January 19, 2007

Random testing

[0 Select inputs at random from a program’s input space
[0 Check that program behaves correctly on each input

[0 An attractive error-detection technique
B Easy to implement and use
B Yields lots of test inputs
m Finds errors

OO0O000

O

Miller et al. 1990: Unix utilities

Kropp et al.1998: OS services

Forrester et al. 2000: GUI applications
Claessen et al. 2000: functional programs
Csallner et al. 2005,

Pacheco et al. 2005: object-oriented programs
Groce et al. 2007: flash memory, file systems

Evaluations of random testing

[0 Theoretical work suggests that random testing is
as effective as more systematic input generation
techniques (Duran 1984, Hamlet 1990)

[0 Some empirical studies suggest systematic is more
effective than random

0 Ferguson et al. 1996: compare with chaining
[0 Marinov et al. 2003: compare with bounded exhaustive

0 Visser et al. 2006: compare with model checking and
symbolic execution

Studies are performed on small benchmarks,
they do not measure error revealing effectiveness,
and they use completely undirected random test generation.

Contributions

L

We propose feedback-directed random test
generation

B Randomized creation of new test inputs is guided by
feedback about the execution of previous inputs

B Goal is to avoid redundant and illegal inputs

Empirical evaluation

B Evaluate coverage and error-detection ability on a large
number of widely-used, well-tested libraries (780KLOC)

B Compare against systematic input generation
B Compare against undirected random input generation

Outline

[0 Feedback-directed random test generation

[0 Evaluation:
B Randoop: a tool for Java and .NET
B Coverage
B Error detection

[0 Current and future directions for Randoop

Random testing: pitfalls

1. Useful test 3. Useful test
Set t = new HashSet(); Date d = new Date(2006, 2, 14);

s.add(“hi”); assertTrue(d.equals(d));
assertTrue(s.equals(s));

2. R ndan

Set 5g new HashSet();
s.add("IN;

S.iIsEmpty

do not output

do not even create

Feedback-directed random
test generation

[0 Build test inputs incrementally
B New test inputs extend previous ones
B In our context, a test input is a method sequence

[0 As soon as a test input is created, execute it

[0 Use execution results to guide generation
B away from redundant or illegal method sequences
B towards sequences that create new object states

Technique input/output

1 Input:
B classes under test
B time limit
B set of contracts

[0 Method contracts (e.g. “o.hashCode() throws no exception”)
O Object invariants (e.g. “o.equals(o) == true”)

[0 Output: contract-violating test cases. Example:

| HashMap h = new HashMap();
no contracts CoI_Iection c = h.values();
violated Object[] a = c.toArray();

up to last LinkedList | = new LinkedList();
method call l.addFirst(a);

| TreeSet t = new TreeSet(l);
Set u = Collections.unmodifiableSet(t); |

assertTrue(u.equals(u)); fails when executed

\I

Technique

1. Seed components
components = { |inti=0;| |boolean b = false; e}

2. Do until time limit expires:

a. Create a new sequence
I. Randomly pick a method call m(T...T\)/ Tret

ii. For each input parameter of type T;, randomly pick a
sequence S; from the components that constructs an object

v; of type Ti
iii. Create new sequence S,q =S1i - i Sk i Tret Vnew = M(V1...vk);
iv. if Spew Was previously created (lexically), go to i

b. Classify the new sequence Snay
a. May discard, output as test case, or add to components

Classifying a sequence

execute and ..

contract minimize

start cluzes iolated? sequence
violated”

contracts 9

no sequence

components < re d?m dant? cqntrgct-

' violating

test case

discard
sequence

Redundant sequences

[0 During generation, maintain a set of all
objects created.

[0 A sequence is redundant if all the objects

created during its execution are members of
the above set (using equals to compare)

[0 Could also use more sophisticated state
equivalence methods
B E.g. heap canonicalization

Outline

[0 Feedback-directed random test generation

-Evaluation:

B Randoop: a tool for Java and .NET
B Coverage
B Error detection

[0 Current and future directions for Randoop

Randoop

O Implements feedback-directed random test generation

0 Input:
B An assembly (for .NET) or a list of classes (for Java)
B Generation time limit
B Optional: a set of contracts to augment default contracts

O Output: a test suite (Junit or Nunit) containing
B Contract-violating test cases
B Normal-behavior test cases

Randoop outputs oracles

[0 Oracle for contract-violating test case:

Object o = new Object();

LinkedList | = new LinkedList();

|.addFirst(o);

TreeSet t = new TreeSet(l);

Set u = Collections.unmodifiableSet(t);
assertTrue(u.equals(u)); // expected to fail

[0 Oracle for normal-behavior test case:

Object o = new Object();

LinkedList | = new LinkedList();

|.addFirst(o);

l.add(0);

assertEquals(2, l.size()); // expected to pass
assertEquals(false, l.isEmpty()); // expected to pass

Randoop uses observer methods to capture object state

Some Randoop options

[0 Avoid use of null

statically... ...and dynamically
Object o = new Object(); Object o = returnNull();
LinkedList | = new LinkedList(); LinkedList | = new LinkedList(),;
l.add(null); l.add(0);

[0 Bias random selection

B Favor smaller sequences
B Favor methods that have been less covered
B Use constants mined from source code

Outline

[0 Feedback-directed random test generation

[0 Evaluation:
B Randoop: a tool for Java and .NET

- m Coverage

B Error detection

[0 Current and future directions for Randoop

Coverage

[0 Seven data structures (stack, bounded stack,
list, bst, heap, rbt, binomial heap)

[0 Used in previous research
B Bounded exhaustive testing [Marinov 2003]
B Symbolic execution [Xie 2005]
B Exhaustive method sequence generation [Xie 2004]

0 All above techniques achieve high coverage in
seconds

[0 Tools not publicly available

Coverage achieved by Randoop

[0 Comparable with exhaustive/symbolic techniques

data structure time (s) |branch
Cov.

Bounded stack (30 LOC) 1 100%
Unbounded stack (59 LOC) 1 100%
BS Tree (91 LOC) 1 96%
Binomial heap (309 LOC) 1 84%
Linked list (253 LOC) 1 100%
Tree map (370 LOC) 1 81%
Heap array (71 LOC) 1 100%

Visser containers

L

Visser et al. (2006) compares several input
generation techniques

Model checking with state matching

Model checking with abstract state matching
Symbolic execution

Symbolic execution with abstract state matching
Undirected random testing

Comparison in terms of branch and predicate
coverage

Four nontrivial container data structures
Experimental framework and tool available

Predicate coverage

Binary tree

Binomial heap

time (seconds)

55 102
g @ Qeedback-directed <>best systematic
o feedback-directed o
Q 54 > e 96
[e] o
o . o
e <gJest systematic e
[\ [\]
S 53 o 90
g _ § undirected random‘
a undirected random s

52 T T T ’ 84 T T

0 0.5 1 1.5 2 2.5 5 10 15
time (seconds) time (seconds)
Fibonacci heap Tree map
100 107
feedback-directed) —di i

& 91— & 106 @feedback-directed best systematicy
(] . [}
§ best systematic o §
P 92 P 105
© ©
Q o R
= = undirected random
2 88 . D 104 <
S ‘undlrected random a

84 Ll L] L] L] 103 T T T L}

0 20 40 60 80 100 0 10 20 30 40 50

time (seconds)

Outline

[0 Feedback-directed random test generation

[0 Evaluation:
B Randoop: a tool for Java and .NET
B Coverage

- B Error detection

[0 Current and future directions for Randoop

Subjects

LOC Classes
JDK (2 libraries) 53K 272
(java.util, javax.xml)
Apache commons (5 libraries) 114K 974

(logging, primitives, chain jelly, math, collections)

.Net framework (5 libraries) 582K 3330

Methodology

[0 Ran Randoop on each library
B Used default time limit (2 minutes)

[0 Contracts:
[0 o.equals(o)==true
o.equals(o) throws no exception
o.hashCode() throws no exception
o.toString() throw no exception
No null inputs and:
B Java: No NPEs
B .NET: No NPEs, out-of-bounds, of illegal state exceptions

O0O00

Results

test error- distinct
cases revealing errors

output | tests cases
JDK 32 29 8
Apache commons 187 29 6
.Net framework 192 192 192
Total 411 250 206

Errors found: examples

O

O

JDK Collections classes have 4 methods that create objects
violating o.equals(o) contract

Javax.xml creates objects that cause hashCode and toString to
crash, even though objects are well-formed XML constructs

Apache libraries have constructors that leave fields unset,
leading to NPE on calls of equals, hashCode and toString (this
only counts as one bug)

Many Apache classes require a call of an init() method before
object is legal—led to many false positives

.Net framework has at least 175 methods that throw an
exception forbidden by the library specification (NPE, out-of-
bounds, of illegal state exception

.Net framework has 8 methods that violate o.equals(o)

.Net framework loops forever on a legal but unexpected input

JPF

[0 Used JPF to generate test inputs for the Java
libraries (JDK and Apache)
B Breadth-first search (suggested strategy)
B max sequence length of 10

0 JPF ran out of memory without finding any errors
B Out of memory after 32 seconds on average

B Spent most of its time systematically exploring a very
localized portion of the space

[0 For large libraries, random, sparse sampling
seems to be more effective

Undirected random testing

[0 JCrasher implements undirected random test
generation

[0 Creates random method call sequences
B Does not use feedback from execution
[0 Reports sequences that throw exceptions

0 Found 1 error on Java libraries
B Reported 595 false positives

Object o = new Object();
LinkedList | = new LinkedList();

Regression testing |

assertEquals(2, l.size()); // expected to pass
assertEquals(false, l.isEmpty()); // expected to pass

[0 Randoop can create regression oracles
[0 Generated test cases using JDK 1.5

Randoop generated 41K regression test cases

[0 Ran resulting test cases on

JDK 1.6 Beta
[0 25 test cases failed

Sun’s implementation of the JDK
O 73 test cases failed
Failing test cases pointed to 12 distinct errors

These errors were not found by the extensive
compliance test suite that Sun provides to JDK
developers

Evaluation: summary

[0 Feedback-directed random test generation:

B s effective at finding errors

[0 Discovered several errors in real code (e.g. JDK, .NET
framework core libraries)

B Can outperform systematic input generation
[0 On previous benchmarks and metrics (coverage), and
O On a new, larger corpus of subjects, measuring error detection

B Can outperform undirected random test generation

Outline

[0 Feedback-directed random test generation

[0 Evaluation:
B Randoop: a tool for Java and .NET
B Coverage
B Error detection

-Current and future directions for Randoop

Tech transfer

[0 Randoop is currently being maintained by a
product group at Microsoft

B Spent an internship doing the tech transfer

O How would a test team actually use the tool?
Push-button at first, desire more control later

0 Would the tool be cost-effective?

B Yes
B Immediately found a few errors
B With more control, found more errors
B Pointed to blind spots in
existing test suites
Existing automated testing tools
[0 Which heuristics would be most useful?
B The simplest ones (e.g. uniform selection)
B More sophisticated guidance was best left to the users of the tool

Future directions

[0 Combining random and systematic generation
B DART (Godefroid 2005) combines random and

systematic generation of test data

B How to combine random and systematic generation

of sequences?

[0 Using Randoop for reliability estimation

Random sampling amenable to statistical analysis

Are programs that Randoop finds more problems with
more error-prone?

[0 Better oracles

To date, we have used a very basic set of contracts
Will better contracts lead to more errors?

Incorporate techniques that create oracles
automatically

Conclusion

[0 Feedback-directed random test generation
B Finds errors in widely-used, well-tested libraries
B Can outperform systematic test generation
® Can outperform undirected test generation

[0 Randoop:
B Easy to use—just point at a set of classes
B Has real clients: used by product groups at Microsoft

[0 A mid-point in the systematic-random space of
input generation techniques

	Feedback-directed Random Test Generation
	Random testing
	Evaluations of random testing
	Contributions
	Outline
	Random testing: pitfalls
	Feedback-directed random test generation
	Technique input/output
	Technique
	Classifying a sequence
	Redundant sequences
	Outline
	Randoop
	Randoop outputs oracles
	Some Randoop options
	Outline
	Coverage
	Coverage achieved by Randoop
	Visser containers
	Predicate coverage
	Outline
	Subjects
	Methodology
	Results
	Errors found: examples
	JPF
	Undirected random testing
	Regression testing
	Evaluation: summary
	Outline
	Tech transfer
	Future directions
	Conclusion

