
1

Explaining Visual Changes
in Web Interfaces 

 
Brian Burg, Andrew J Ko, Michael Ernst 

  
University of Washington



2



Feature Location

3

Feature location is the activity of identifying an 
initial location in the source code that implements 

functionality in a software system. 

Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D., "Feature Location 
in Source Code: A Taxonomy and Survey", Journal of Software: 

Evolution and Process (JSEP), vol. 25, no. 1, January 2013, pp. 53–95



Feature Location
for Interactive Web Content

4



5

Visual Output

😄

How can I interact with it?



6

Visual OutputDOM & CSS 

🤔 😄

How is the visual effect achieved?



7

Visual OutputDOM & CSS JavaScript

🤔😧 😄

What code is ultimately responsible?



8

No Output HistoryScattered StateNo Links Between 
Source and State

Visual OutputDOM & CSS JavaScript



9

Scry
Staged, Interactive Feature Location



10

Output Examples

Staged, Interactive Feature Location



11

State DifferencesOutput Examples

Δ(pre, post)

Staged, Interactive Feature Location



12

JavaScript MutationsState DifferencesOutput Examples

Δ(pre, post)

Staged, Interactive Feature Location







15

JavaScript MutationsState DifferencesOutput Examples

Δ(pre, post)



What determines visual appearance?

16

DOM Tree Structure

CSS Style Properties  
Color, layout mode, visual styling,  

text rendering, handling of children

Rendering  
Engine

Visual State



17

Target Element Snapshots

DOM Subtree

Computed Styles & 
Related Rules

Element Screenshots

Mutation Operations



Why does visual appearance change?

18

DOM Tree Mutations

Insertion Deletion

Ordinal Change

class=“active”
textContent = …
:hover, :focus

Attributes & States

Style Property Changes

Rule Changes
Inline Styles
Animations



19

Detecting changes in appearance

Visual Diff 
>1%?

NO

YES Commit New 
Snapshot

YES

Painted Rects

Do they 
intersect?

NO

Snapshot of 
Target Element



20

Comparing
State Snapshots

Per-element change summaries 
Structure: Insertion, Deletion, Attributes, … 
Styles: Added, Removed, Value Change 

Relies on stable DOM element identity  
Doesn’t work well when view state is split from DOM

Δ(pre, post)



Change-Relevant
Operation Slicing

1. Instrument and record mutation operations.

2. Build a dependency graph for operations between 
the pre-state and post-state. 

3. Based on change summary, find an equivalent 
mutation operation to explain the change.

4. Return equivalent operation + dependencies



22

Technical Challenges

Visual containment, stacking


Software vs hardware rendering


Unstable DOM element identities


Megamorphic call sites in library code


Pruning ineffective styles and attributes



Summary

Feature Location via Visual States  
States can be automatically captured when drawing. 

Juxtapose Captured Inputs and Outputs  
State and output snapshots help explain each other. 

Diff Markers Filter Relevant Operations 
Slicing algorithms can show responsible operations. 

23



24

Explaining Visual Changes
in Web Interfaces 

 
Brian Burg, Andrew J Ko, Michael Ernst 

  
University of Washington


