
Boolean Formulas for the Static

Identification of Injection Attacks in Java

Michael D. Ernst Alberto Lovato Damiano Macedonio
Ciprian Spiridon Fausto Spoto

University of Washington, USA & University of Verona, Italy & Julia Srl, Italy

Suva, November 25, 2015, LPAR

1 / 1

Servlets and Their Parameters

Servlet Code
public class MyServlet extends HttpServlet {

void doGet(HttpServletRequest request, HttpServletResponse response) {

String city = request.getParameter("city");

String month = request.getParameter("month");

.....

PrintWriter out = response.getWriter();

out.println("<p>this goes to the browser</p>");

.....

}

}

2 / 1

The Risk of Injections

Servlets allow user input to flow through the code

input should flow to as fewer places as possible

input should be checked for validity (sanitized)

Unconstrained flow of input into sensitive program statements
poses a security risk

Here we deal with the flow issue (taintedness analysis)

3 / 1

Top SW Errors according to CWE/SANS 2011

http://cwe.mitre.org/top25/#Listing

Rank Score Id Name

1 93.8 CWE-89 SQL Injection
2 83.3 CWE-78 OS Command Injection
3 79.0 CWE-120 Buffer Overflow
4 77.7 CWE-79 Cross-site Scripting
· · ·
10 73.8 CWE-807 Untrusted Inputs in Security Decision
· · ·
16 66.0 CWE-829 Inclusion of Untrusted Functionality
· · ·
22 61.1 CWE-601 Open Redirect

4 / 1

Example 1/2

1 public class MyServlet extends HttpServlet {

2 void doGet(HttpServletRequest request, HttpServletResponse response) {

3 String user = request.getParameter("user"); A

4 String url = "jdbc:mysql://192.168.2.128:3306/anvayaV2";

5 Class.forName("com.mysql.jdbc.Driver").newInstance(); B

6 try (Connection conn = DriverManager.getConnection(url, "root", "");

7 PrintWriter out = response.getWriter()) { C

8 Statement st = conn.createStatement();

9 String query = wrapQuery(user); D

10 out.println("Query : " + query); E

11 ResultSet res = st.executeQuery(query); F

12 out.println("Results:");

13 while (res.next())

14 out.println("\t\t" + res.getString("address")); G

15 st.executeQuery(wrapQuery("dummy")); H

16 }

17 }

18 private String wrapQuery(String s) {

19 return "SELECT * FROM User WHERE userId=’" + s + "’";

20 }

21 }

5 / 1

Example 2/2

Actual vulnerabilities:

SQL injection at F
ResultSet res = st.executeQuery(query);

Cross-site scripting injections at E and G
out.println("Query : " + query);

out.println("\t\t" + res.getString("address"));

SQL XSS

actual F E G

FindBugs F

Google CodePro Analytix F H E G

HP Fortify SCA F E

Julia F E G

6 / 1

Our Goal

1 formalize taintedness for variables of reference type

2 define taintedness analysis for Java bytecode, through
abstract interpretation

3 implement that analysis through binary decision diagrams

4 experiment and compare the results (soundness/precision)

7 / 1

Taintedness for Variables of Reference Type

The result of wrapQuery() is as tainted as the parameter:

private String wrapQuery(String s) {

return "SELECT * FROM User WHERE userId=’" + s + "’";

}

What does “Tainted” Mean for a String?

the pointer itself is not tainted information

the field char[] String.value can contain tainted data

there is no fixed partition of the fields into tainted or
untainted
a string can be tainted and, at the same time, other
strings can be untainted

8 / 1

Object-sensitive Taintedness based on Reachability

a primitive value is tainted if it is computed from tainted
information

a reference value is tainted if it is possible to reach a
tainted value from it (in memory, by following its fields)

As all notions based on reachability, ours is sensitive to
side-effects and hence more difficult to analyze statically than
a property based on the value immediately bound to each
variable only

encapsulation and immutable types such as strings
simplify the job

9 / 1

Formalization of Our Notion of Taintedness

We use a concrete semantics that explicitly tags data injected
as user input. We represent such tainted data as boxed values

Tainted Value

Let v ∈ Z∪ Z ∪L∪{null} be a value.
Let µ be a memory.
The property of being tainted for v in µ is defined as:

1 v ∈ Z , or

2 v is a location, o = µ(v) is the object at that location
and there is a field f such that its value o(f) is tainted in
µ

10 / 1

Selection of Tainted Variables in a State

JVM states σ contain i local variables and j stack elements.
Exceptional states are underlined and have a single (j = 1)
stack element: the reference to the exception object

Tainted Variables

tainted(σ)=



{ lk | l [k] is tainted in µ, 0≤k< i}
∪{ sk | vk is tainted in µ, 0≤k< j}

if σ = 〈l || vj−1 :: · · · ::v0 ||µ〉

{ lk | l [k] is tainted in µ, 0 ≤ k < i} ∪ {e, s0 }
if σ = 〈l || v0 ||µ〉 and v0 is tainted in µ

{ lk | l [k] is tainted in µ, 0 ≤ k < i} ∪ {e}
if σ = 〈l || v0 ||µ〉 and v0 is not tainted in µ

11 / 1

Abstract Domain of Boolean Formulas

A Boolean variable lk or sk is true iff the corresponding local
variable or stack element holds a tainted value

The taintedness abstract domain is the set of Boolean
formulas over

{ě, ê}∪{ľk

input state

| 0 ≤ k}∪{šk | 0 ≤ k}∪{l̂k

output state

| 0 ≤ k}∪{ŝk | 0 ≤ k}

Concretization Map

γ(φ) =

{
denotation δ

∣∣∣∣ for all states σ s.t. δ(σ) is defined
ˇtainted(σ) ∪ ˆtainted(δ(σ)) |= φ

}

12 / 1

Abstraction of each Bytecode Instruction 1/3

Each bytecode instruction is abstracted into a Boolean formula
whose model is consistent with the propagation of taintedness

const v

U ∧ ¬ě ∧ ¬ê ∧ ¬ŝj

load k

U ∧ ¬ě ∧ ¬ê ∧ (ľk ↔ ŝj)

store k

U ∧ ¬ě ∧ ¬ê ∧ (šj−1 ↔ l̂k)

with a frame condition

U = ∧v∈L(v̌ ↔ v̂) ∧ (¬ê → ∧v∈S(v̌ ↔ v̂))

13 / 1

Abstraction of each Bytecode Instruction 2/3

add

U ∧ ¬ě ∧ ¬ê ∧ (ŝj−2 ↔ (šj−2 ∨ šj−1))

new k

U ∧ ¬ě ∧ (¬ê → ¬ŝj) ∧ (ê → ¬ŝ0)

throw

U ∧ ¬ě ∧ ê ∧ (ŝ0 → šj−1)

catch

U ∧ ě ∧ ¬ê

14 / 1

Abstraction of each Bytecode Instruction 3/3

For reading a field, we exploit our notion of taintedness based
on reachability to get an object-sensitive approximation

getfield f

U ∧ ¬ě ∧ (¬ê → (ŝj−1 → šj−1)) ∧ (ê → ¬ŝ0)

For writing into a field, we must conservatively foresee all
possible side-effects on data reachable from the variables

putfield f

∧v∈LRj(v) ∧ (¬ê → ∧v∈SRj(v)) ∧ (ê → ¬ŝ0) ∧ ¬ě

where we use a preliminary reachability analysis in

Rj(v) =

{
v̌ ↔ v̂ if ¬reach(v , sj−2)

(v̌ ∨ šj−1)← v̂ if reach(v , sj−2)

15 / 1

The Approximation of Method Calls

A Denotational Approach

we start from the denotation φ of the callee(s)

we plug φ at the calling point

by renaming callee’s formal arguments into caller’s
actual arguments
by renaming the returned value into the result of the call
caller’s variables that share with at least an argument

that might be side-effected get involved in a worst-case
assumption

16 / 1

Abstract Compositional Semantics

Sequential Composition

φ1;T φ2 = ∃V (φ1[V /V̂] ∧ φ2[V /V̌])

Disjunctive Composition

φ1;T φ2 = φ1 ∨ φ2

Fixpoint

A fixpoint is needed to build the abstract semantics by
saturating all execution paths of loops and recursion

The fixpoint is reached in a finite number of iterations
since there is a finite number of (equivalence classes of)
Boolean formulas over a finite number of variables (those
in scope at each given program point)

17 / 1

A Sound Framework of Analysis

Sources Program variables corresponding to sources of
tainted data (user input) are forced to true in the
Boolean formulas

Sinks Specific variables where tainted data must not
flow are observed to see if the Boolean formulas
entail them to be true

Soundness

We have a formal statement of soundness for the abstraction
of each single bytecode instruction and for the operators for
sequential and disjunctive composition

18 / 1

Sources and Sinks

Sources of tainted data

servlet requests

console read methods

database operations

manually annotated as @Untrusted

Methods that must never receive tainted data

SQL query methods

servlet output methods

library loading methods

reflective operations

manually annotated as @Trusted

19 / 1

Field Sensitivity

According to our Boolean approximation for getfield, if an
object is assumed to be tainted, then all its fields are
conservatively assumed to be tainted.

This is object-sensitive but field-insensitive.

It is possible to build a field-sensitive analysis through a
greatest fixpoint computation of an oracle of fields assumed to
be always untainted, for all objects.

Experiments have shown that field-sensitivity does not actually
increase the precision of the analysis.

20 / 1

Identification of SQL-Injections: CWE89

Times in minutes
CodePro A.: 20 FindBugs: 2 Fortify SCA: 3600 Julia: 79

21 / 1

Identification of SQL-Injections: WebGoat

Times in minutes
CodePro A.: 1 FindBugs: 20 Fortify SCA: 164 Julia: 3

22 / 1

Identification of XSS-Injections: CWE80

Times in minutes
CodePro A.: 9 FindBugs: < 1 Fortify SCA: 590 Julia: 5

23 / 1

Identification of XSS-Injections: CWE81

Times in minutes
CodePro A.: < 1 FindBugs: < 1 Fortify SCA: 303 Julia: 3

24 / 1

Identification of XSS-Injections: WebGoat 1/2

Times in minutes
CodePro A.: 1 FindBugs: < 1 Fortify SCA: 164 Julia: 3

25 / 1

False Negatives for a Sound Analysis?

A sound static analysis should never have false negatives (real
bugs that are not found by the analysis)

Java Server Pages (JSP)

browser pages made up of a mixture of HTML and Java
code, processed by a servlet container such as Tomcat

Tomcat uses Jasper to compile JSP on-the-fly into Java
source that gets compiled into Java bytecode and run

JSP compiled code is not available to Julia and its entry
points of tainted data are unkown to Julia

We have manually run Jasper/javac to get the Java bytecode
of the JSP. With that, Julia’s analysis finds all bugs, with no
false negatives anymore

26 / 1

Identification of XSS-Injections: WebGoat 2/2

Here all tools have received the classes compiled with Jasper

Times in minutes
CodePro A.: 1 FindBugs: < 1 Fortify SCA: 164 Julia: 3

27 / 1

Conclusion

Contributions

a new notion of taintedness for reference types

taintedness analysis in Boolean form

efficient implementation with BDDs

runs on real software with good results

Next steps

automatic identification of entry points of tainted data
for Java frameworks

extension to Android

28 / 1

