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ABSTRACT
Continuous testing uses excess cycles on a developer’s workstation
to continuously run regression tests in the background, providing
rapid feedback about test failures as source code is edited. It is
intended to reduce the time and energy required to keep code well-
tested and prevent regression errors from persisting uncaught for
long periods of time. This paper reports on a controlled human
experiment to evaluate whether students using continuous testing
are more successful in completing programming assignments. We
also summarize users’ subjective impressions and discuss why the
results may generalize.

The experiment indicates that the tool has a statistically signif-
icant effect on success in completing a programming task, but no
such effect on time worked. Participants using continuous testing
were three times as likely to complete the task before the deadline.
Participants using continuous compilation were twice as likely to
complete the task, providing empirical support to a common fea-
ture in modern development environments. Most participants found
continuous testing to be useful and believed that it helped them
write better code faster, and 90% would recommend the tool to
others. The participants did not find the tool distracting, and in-
tuitively developed ways of incorporating the feedback into their
workflow.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: [Integrated environments];
D.2.5 [Testing and Debugging]: [Testing tools]

General Terms
Experimentation, Human Factors, Measurement, Verification

Keywords
continuous testing, unit testing, continuous compilation, test-first
development

1. INTRODUCTION
Continuous testing uses excess cycles on a developer’s work-

station to continuously run regression tests in the background as
the developer edits code. It provides developers rapid feedback re-
garding errors that they have inadvertently introduced. Continuous
testing is inspired by continuous compilation, a feature of many
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modern development environments that gives rapid feedback about
compilation errors. This paper experimentally evaluates whether
the extra feedback from continuous testing assists developers in a
programming task without producing harmful side effects.

It is good practice to use a regression test suite while perform-
ing development tasks such as enhancing or refactoring an existing
codebase. (Test-driven development [3] seeks to extend this situ-
ation to all development tasks: before each piece of functionality
is added, a test for the functionality is written, added to the suite,
and observed to fail.) During development, running the test suite
bolsters the developer’s confidence that they are making steady
progress, and catches regression errors early. The longer a regres-
sion error persists without being caught, the larger its drain on pro-
ductivity: when the error is found, more code changes must be
considered to find the changes that directly pertain to the error, the
code changes are no longer fresh in the developer’s mind, and new
code written in the meanwhile may also need to be changed as part
of the bug fix.

Running tests has a cost: remembering to run the tests, waiting
for them to complete, and returning to the task at hand distract from
development. In order to avoid running the tests too often or too
seldom, developers often wait until they are least confident in the
code. Unfortunately, some of the hardest errors to fix are introduced
by what the developer believes to be an innocuous change. Not only
is the developer unlikely to run the tests soon after such a change,
but they are unlikely to remember the change as a possible source
of the error when they do finally discover the problem.

Developers may employ test case selection [16, 25] and prioriti-
zation [36, 26] to reduce the cost of running tests. They may also
continue editing the code while tests run on an old version, but this
further complicates reproducing and tracking down errors.

Continuous testing uses real-time integration with the develop-
ment environment to asynchronously run tests against the current
version of the code and notify the developer of regression errors.
The version of the code being tested is constantly kept in sync with
the version being edited. Whenever the thinking time between two
edits is long enough to run at least one test, continuous testing can
provide useful feedback, without requiring any attention from the
developer unless a regression error is found. Continuous testing
can be combined with selection, prioritization, or other approaches
for further optimization. The developer no longer has to consider
when to run the tests, and errors are caught more quickly, especially
those that the developer had no cause to suspect.

Previous work prospectively evaluated continuous testing [28].
Developer behavior was monitored at a fine granularity, including
the state of all editor buffers and all on-disk files, and when tests
were run. These observations permitted determination of theig-
norance timebetween introduction of each regression error (in the
developer’s editor) and the developer becoming aware of the error
(by running the test suite), and thefix timebetween the developer
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becoming aware of the error and fixing the error. The ignorance
time and fix time are related: larger ignorance times yield larger fix
times. This suggests that reducing ignorance time should reduce fix
time; this observation, along with the development history, permit
prediction of how much time could have been saved by use of a
tool that reduced ignorance time (and indirectly reduced fix time).
The previous work suggested that continuous testing could have re-
duced development time by 10–15% for two single-developer soft-
ware projects, which is substantially more than would have been
achieved by changing manual test frequency or reordering tests.

This paper reports a study that evaluated whether the extra feed-
back provided by continuous testing improved the productivity of
student developers, without producing detrimental side effects like
distraction and annoyance. In a controlled human experiment, 22
students in a software engineering course completed two unrelated
programming assignments as part of their normal coursework. The
assignments supplied partial program implementations and tests
for the missing functionality, simulating a test-first development
methodology. All participants were given a standard Emacs devel-
opment environment, and were randomly assigned to groups that
were provided with continuous testing, just continuous compila-
tion, or no additional tools. Data was gathered from remote moni-
toring of development progress, questionnaires distributed after the
study, and course records. In all, 444 person-hours of active pro-
gramming were observed.

The experimental results indicate that students using continuous
testing were statistically significantly more likely to complete the
assignment by the deadline, compared to students with the standard
development environment. Continuous compilation also statisti-
cally significantly increased success rate, though by a smaller mar-
gin; we believe this is the first empirical validation of continuous
compilation. Our analysis did not show a higher success rate for
students who frequently tested manually. Furthermore, the tools’
feedback did not prove distracting or detrimental: tool users suf-
fered no significant penalty to time worked, and a large majority
of study participants had positive impressions of the tool and were
interested in using it after the study concluded.

This paper is organized as follows. We first detail the tools pro-
vided to students (Section 2) and the design of the experiment (Sec-
tion 3). We then present quantitative (Section 4) and qualitative
(Section 5) results and threats to validity (Section 6). Finally, we
discuss related (Section 7) and future work (Section 8) and con-
clude with a summary of findings (Section 9).

2. TOOLS
We have implemented a continuous testing infrastructure for the

Java JUnit [13] testing framework and for the Eclipse [8] and Emacs
[9] development environments.

JUnit is a regression testing framework for Java. It supports as-
sertions for checking expected results, organizing test cases into
hierarchical suites, running a suite, and presenting results textually
or graphically. Our JUnit extension (used by both plug-ins) persis-
tently records whether a test has ever succeeded in the past. This
permits it to both change the order in which tests are run and the
order in which results are printed. For instance, regression errors,
which are more likely to be surprising to the developer, can be pri-
oritized over unimplemented tests.

We have built continuous testing plug-ins for both Eclipse [30]
and Emacs. We focus here on the Emacs plug-in, which was used
in our experiment. We describe how the user is notified of problems
in his or her code and how the plug-in decides when to run tests.
We conclude this section with a comparison to pre-existing features
in Eclipse and Emacs.

Because Emacs does not have a standard notification mecha-
nism, we indicated compilation and test errors in the mode line.
The mode line is the last line of each Emacs text window; it typi-
cally indicates the name of the underlying buffer, whether the buffer
has unsaved modifications, and what Emacs modes are in use. The
Emacs plug-in (a “minor mode” in Emacs parlance) uses some of
the empty space in the mode line. When there are no errors to
report, that space remains blank, but when there are errors, then
the mode line contains text such as “Compile-errors” or “Regres-
sions:3”. This text indicates the following states: the code can-
not be compiled; regression errors have been introduced (tests that
used to give correct answers no longer do); some tests are unimple-
mented (the tests have never completed correctly). Because space
in the mode line is at a premium, no further details (beyond the
number of failing tests) are provided, but the user can click on
the mode line notification in order to see details about each er-
ror. Clicking shows the errors in a separate window and places the
cursor on the line corresponding to the failed assertion or thrown
exception. Additional clicks navigate to lines corresponding to ad-
ditional errors and/or to different stack frames within a backtrace.

The Emacs plug-in performs testing whenever there is a suffi-
ciently long pause1; it does not require the user to save the code,
nor does it save the code for the user. The Emacs plug-in indicates
errors that would occur if the developer were to save all modified
Emacs buffers, compile, and test the on-disk version of the code.
In other words, the Emacs plug-in indicates problems with the de-
veloper’s current view of the code.

The Emacs plug-in implements testing of modified buffers by
transparently saving them to a separate shadow directory that con-
tains a copy of the software under development, then performing
compilation and testing in the shadow directory. Users never view
the shadow directory, only the test results. This approach has the
advantage of providing earlier notification of problems. Otherwise,
the developer would have no possibility of learning of problems
until the next save, which might not occur for a long period. Noti-
fication of inconsistent intermediate states can be positive if it rein-
forces that the developer has made an intended change, or negative
if it distracts the developer; see Section 5.

The continuous testing tool represents an incremental advance
over existing technology in Emacs and Eclipse. By default, Emacs
indirectly indicates syntactic problems in code via its automatic
indentation, fontification (coloring of different syntactic entities
in different colors), indication of matching parentheses, and sim-
ilar mechanisms. Eclipse provides more feedback during editing
(though less than a full compiler can), automatically compiles when
the user saves a buffer, indicates compilation problems both in the
text editor window and in the task list, and provides an integrated
interface for running a JUnit test suite. Our Emacs plug-in provides
complete compilation feedback in real time and JUnit integration,
and both of our plug-ins provide asynchronous notification of test
errors.

3. EXPERIMENTAL DESIGN
This section describes the experimental questions, subjects, tasks,

and treatments in our evaluation of continuous testing.

3.1 Experimental questions
Continuous testing exploits a regression test suite to provide more

feedback to developers than they would get by testing manually,
while also reducing the overhead of manual testing. Continuous

1Tests are run after 5 seconds of idle time, if it has been at least 15
seconds or 30 keystrokes since the last test run.

77



testing has intuitive appeal to many developers, but others are skep-
tical about its benefits. An experimental evaluation is required to
begin to settle such disagreements.

We designed an experiment to address these issues, in hopes of
gaining insight into three main questions.

1. Does continuous testing improve developer productivity? In-
creased developer productivity could be reflected either by
accomplishing a task more quickly, or by accomplishing more
in a given timeframe. We could control neither time worked
nor whether students finished their assignments, but we mea-
sured both quantities via monitoring logs and class records.

2. Does the asynchronous feedback provided by continuous test-
ing distract and annoy users? Intuition is strongly divided:
some people to whom we have explained the idea of contin-
uous testing have confidently asserted that continuous test-
ing would distract developers so much that it would actually
make them slower. To address this question, we used both
qualitative results from a participant questionnaire and quan-
titative productivity data as noted above.

3. If the continuous testing group was more productive, why?
Continuous testing subsumes continuous compilation, and
it enforces frequent testing; perhaps one of those inciden-
tal features of the continuous testing environment, or some
other factor, was the true cause of any improvement.

(a) Continuous compilation. We compared the performance
of three treatment groups: one with continuous testing,
one with only continuous compilation, and one with no
additional tool.

(b) Frequent testing. Although all students were encour-
aged to test throughout development, not all of them
did so. We compared the performance of students who
tested more frequently with those who tested less fre-
quently and with those who had a continuous testing
tool. Any effect of easy or fast testing was unimpor-
tant, since all students could run the tests in five sec-
onds with a single keypress.

(c) Demographics. We chose a control group randomly
from the participants, and we measured and statistically
tested various demographic factors such as program-
ming experience.

3.2 Participants
Our experimental subjects were students, primarily college sopho-

mores, in MIT’s 6.170 Laboratory in Software Engineering course
(http://www.mit.edu/˜6.170 ). This is the second program-
ming course at MIT, and the first one that uses Java (the first pro-
gramming course uses Scheme). Of the 100 students taking the
class during the Fall 2003 semester, 34 volunteered to participate in
the experiment. In order to avoid biasing our sample, participants
were not rewarded in any way. In order to maintain consistency
between the experimental and control groups, we excluded all vol-
unteers who did not use the provided development environment for
all of their development. The excluded students used a home PC or
a different development environment for some of their work. This
left us with 22 participants for the first task, and 17 for the second
task (see Section 3.3).

On average, the participants had 3 years of programming experi-
ence, and one third of them were already familiar with the notions
of test cases and regression errors. Figure 1 gives demographic
details regarding the study participants.

Mean Dev. Min. Max.
Years programming 2.8 2.9 0.5 14.0
Years Java programming 0.4 0.5 0.0 2.0
Years using Emacs 1.3 1.2 0.0 5.0
Years using a Java IDE 0.2 0.3 0.0 1.0

Frequencies
Usual environment Unix 29%; Win 38%; both 33%
Regression testing familiar 33%; not familiar 67%
Used Emacs to compile at least once 62%; never 38%
Used Emacs for Java at least once 17%; never 83%

Figure 1: Study participant demographics (N=22). “Dev” is stan-
dard deviation.

Don’t use Emacs 45%
Don’t use Athena 29%
Didn’t want the hassle 60%
Feared work would be hindered 44%
Privacy concerns 7%

Figure 2: Reasons for non-participation in the study (N=31). Stu-
dents could give as many reasons as they liked.

Differences between participants and non-participants do not af-
fect the internal validity of our study, because we chose a control
group (that was supplied with no experimental tool) from among
the participants who had volunteered for the study. Our analysis
indicates that it would have been wrong to use non-participants
as the control group, because there were statistically significant
differences between participants and non-participants with respect
to programming experience and programming environment prefer-
ence.

Two factors that we measured predicted participation to a statis-
tically significant degree. First, students who had more Java expe-
rience were less likely to participate: participants had an average of
.4 years of Java experience, whereas non-participants had an aver-
age of almost .8 years of Java experience. Many of the more expe-
rienced students said this was because they already had work habits
and tool preferences regarding Java coding. Overall programming
experience was not a predictor of participation. Second, students
who had experience compiling programs using Emacs were more
likely to participate; this variety of Emacs experience did not pre-
dict any of the factors that we measured, however.

Figure 2 summarizes the reasons given by students who chose
not to participate; 31 of the non-participants answered a question-
naire regarding their decision. Very few students indicated that
privacy concerns were a factor in their decision not to participate,
which was encouraging considering the degree of monitoring per-
formed on the students (see Section 3.5). The 6.170 course staff
only supported use of Athena, MIT’s campus-wide computing en-
vironment, and the Emacs editor. In the experiment, we provided
an Emacs plug-in that worked on Athena, so students who used
a different development environment could not participate. The
four non-Emacs development environments cited by students were
(in order of popularity): Eclipse, text editors (grouping together
vi, pico, and EditPlus2), Sun ONE Studio, and JBuilder. Students
who did not complete their assignments on Athena typically used
their home computers. Neither student experience with, nor use of,
Emacs or of Athena was a statistically significant predictor of any
measure of success (see Section 4.2).

3.3 Tasks
During the experiment, the participants completed the first two

assignments (problem sets) for the course. Participants were treated
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PS1 PS2
participants 22 17
skeleton lines of code 732 669
written lines of code 150 135
written classes 4 2
written methods 18 31
time worked (hours) 9.4 13.2

Figure 3: Properties of student solutions to problem sets. All data,
except number of participants, are means. Students received skele-
ton files with Javadoc and method signatures for all classes to be
implemented. Students then added about 150 lines of new code to
complete the programs. Files that students were provided but did
not need to modify are omitted from the table.

PS1 PS2
tests 49 82
initial failing tests 45 46
lines of code 3299 1444
running time (secs) 3 2
compilation time (secs) 1.4 1.4

Figure 4: Properties of provided test suites. “Initial failing tests” in-
dicates how many of the tests are not passed by the staff-provided
skeleton code. Times were measured on a typical X-Windows-
enabled dialup Athena server under a typical load 36 hours before
problem set deadline.

no differently than other students. All students were encouraged by
staff and in the assignment hand-out to run tests often throughout
development. The problem sets were not changed in any way to
accommodate the experiment, nor did we ask participants to change
their behavior when solving the problem sets. All students were
given a 20-minute tutorial on the experimental tools and had access
to webpages explaining their use. A few students in the treatment
groups chose to ignore the tools and thus gained no benefit from
them.

Each problem set provided students with a partial implemen-
tation of a simple program. Students were also provided with a
complete test suite (see Section 3.3.1). The partial implementa-
tion included full implementations of several classes and skeleton
implementations of the classes remaining to be implemented. The
skeletons included all Javadoc comments and method signatures,
with the body of each method containing only a RuntimeExcep-
tion. No documentation tasks were required of students for these
assignments. The code compiled and the tests ran from the time
the students received the problem sets. Initially, most of the tests
(all those that exercised any code that students were intended to
write) failed with a RuntimeException; however, some tests ini-
tially passed, and only failed if the student introduced a regression
into the provided code.

The first problem set (PS1) required implementing four Java classes
to complete a poker game. The second problem set (PS2) required
implementing two Java classes to complete a graphing polynomial
calculator. Both problem sets also involved written questions, but
we ignore those questions for the purposes of our experiment. Fig-
ure 3 gives statistics regarding the participant solutions to the prob-
lem sets.

3.3.1 Test suites
Students were provided with JUnit test suites prepared by the

course staff (see Figure 4). Passing these test suites correctly ac-
counted for 75% of the grade for the programming problems in the
problem set. Each test case in the suites consists of one or more

volunteers non-volunteers
waited until end to test 31% 51%
tested throughout 69% 49%

test frequency (minutes)
mean 20 18
min 7 3
max 40 60

Figure 5: Student use of test suites, self-reported. “Volunteers”
omits those who used continuous testing, but includes students who
volunteered for the study, but were excluded for using an IDE other
than Emacs. Only students who tested regularly throughout devel-
opment reported test frequencies.

method calls into the code base, with results checked against ex-
pected values.

The suites are optimized for grading, not performance, coverage,
or usability. (That is, the test cases were developed and organized
according to the pedagogical goals of the class.) However, expe-
rience from teaching assistants and students suggests that the tests
are quite effective at covering the specification students were re-
quired to meet. Compiling and testing required less than five sec-
onds even on a loaded dialup server, since the suites were relatively
small (see Figure 4). Thus, there was no point in using test prioriti-
zation or selection when running these particular test suites.

It is rare in professional development for a developer to develop
or receive a complete test suite for the desired functionality before
they begin writing code on a new development project. However,
since the students were encouraged to concentrate on one failing
test at a time, the effect of the development scenario was similar to
the increasingly common practice of test-driven development [3].
The task also had similarities to maintenance, where a program-
mer must ensure that all tests in a regression test suite continue to
succeed. Finally, when developers are striving for compatibility
or interoperability with an existing system, a de facto test suite is
available, since the two systems’ behavior can be compared.

Several deficiencies of the provided test suites and code impacted
their usefulness as teaching tools and students’ development effec-
tiveness. The PS1 test suite made extensive use of test fixtures
(essentially, global variables that are initialized in a special man-
ner), which had not been covered in lecture, and were confusing to
follow even for some experienced students. In PS2, the provided
implementation of polynomial division depended on the students’
implementation of polynomial addition to maintain several repre-
sentation invariants. Failure to do so resulted in a failure of the divi-
sion test, but not the addition test. Despite these problems, students
reported enjoying the use of the test suites, and found examining
them helpful in developing their solutions. Figure 5 gives more de-
tail about student use of the provided test suites, ignoring for now
participants who used continuous testing; note that students who
volunteered for the study (even if their data was later excluded),
and thus knew they were being monitored, were more likely to re-
port testing throughout development.

3.4 Experimental treatments
The experiment used three experimental treatments: a control

group, a continuous compilation group, and a continuous testing
group. The control group was provided with an Emacs environment
in which Java programs could be compiled with a single keystroke
and in which the (staff-provided) tests could be run with a sin-
gle keystroke. The continuous compilation group was additionally
provided with asynchronous notification of compilation errors in
their code. The continuous testing group was further provided with
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asynchronous notification of test errors. The tools are described in
Section 2.

For each problem set, participants were randomly assigned to
one of the experimental treatments: 25% to the control group, 25%
to the continuous compilation group, and 50% to the continuous
testing group (a larger group, to increase opportunities for qualita-
tive feedback from users). Thus, most participants were assigned
to different treatments for the two problem sets; this avoids con-
flating subjects with treatments and also permits users to compare
multiple treatments.

3.5 Monitoring
Participants agreed to have an additional Emacs plug-in installed

on their system that monitored their behavior and securely trans-
mitted logs to a central remote server. The logged events included
downloading the problem set, remotely turning in the problem set,
changes made to buffers in Emacs containing problem set source
(even if changes were not saved), changes to the source in the file
system outside Emacs, and clicking the mode line to see errors.
A total of 444 person-hours, or almost 3 person-months, of active
time worked were monitored. These logs afforded us additional
predictor and criterion variables beyond those of Section 4.2. They
did not yield statistically significant results, so we omit them from
this paper for brevity, but full details may be found elsewhere [27].

4. QUANTITATIVE RESULTS
This section reports on quantitative results of the experiment;

Section 5 gives qualitative results.

4.1 Statistical tests
This paper reports all, and only, effects that are statistically sig-

nificant at thep = .05 level. All of our statistical tests properly
account for mismatched group and sample sizes.

When comparing nominal (also known as classification or cate-
gorical) variables, we used the Chi-Square test, except that we used
Fisher’s exact test (a more conservative test) when 20% or more of
the the cells of the classification table had expected counts less than
5, because Chi-Square is not valid in such circumstances. When
using nominal variables to predict numeric variables, we used fac-
torial analysis of variance (ANOVA). Where appropriate, we deter-
mined how many of the effects differed using a Bonferroni correc-
tion.

When using numeric variables as predictors, we first dummy-
coded or effect coded the numeric variables to make them nominal,
then used the appropriate test listed above. We did so because we
were less interested in whether there was a correlation (which we
could have obtained from standard, multiple, or logistic regression)
than whether the effect of the predictor on the criterion variable was
statistically significant in our experiment.

4.2 Variables compared
We used 20 variables as predictors: experimental treatment, prob-

lem set, and all quantities of Figures 1 and 8.
The key criterion (effect) variables for success are:

• time worked. Because there is more work in development
than typing code, we divided wall clock time into 5-minute
intervals, and counted 5 minutes for each interval in which
the student made any edits to the.java files comprising his
or her solution.

• errors. Number of tests that the student submission failed.
• correct. True if the student solution passed all tests.

Treatment N Correct
No tool 11 27%
Continuous compilation 10 50%
Continuous testing 18 78%

Figure 6: Treatment predicts correctness. “N” is the number of
participants in each group. “Correct” means that the participant’s
completed program passed the provided test suite.

• grade, as assigned by TAs. We count only points assigned
for code; 75% of these points were assigned automatically
based on the number of passed test cases.

4.3 Statistical results
Overall, we found few statistically significant effects. We ex-

pected this result, because most effects are not statistically signif-
icant or are overwhelmed by other effects — either ones that we
measured or other factors such as the well-known large variation
among individual programmers. (Another reason might be the rel-
atively small sample size, but the fact that some effects were signif-
icant suggests that the sample was large enough to expose the most
important effects.) This section lists all the statistically significant
effects.

1. Treatment predicts correctness (see Figure 6). This is the
central finding of our experiment, and is supported at the
p < .03 level. Students who were provided with a con-
tinuous testing tool were three times as likely to complete
the assignment correctly as those who were provided with
no tool. Furthermore, provision of continuous compilation
doubled the success rate. The latter finding highlights the
benefit that developers may already get from the continuous
compilation capabilities included in modern IDE’s such as
Eclipse [8] and IDEA [12].

2. Continuous testing vs. regular manual testing predicts cor-
rectness. Students were asked in the online questionnaire
whether they tested throughout development (see Figure 5).
Of participants who were not given continuous testing, but
reported testing throughout, only 33% successfully completed
the assignment, significantly less than the 78% success rate
for continuous testing. There was no statistically significant
difference in test frequency between complete and incom-
plete assignments within this group. The mean frequency
for manual testing (see Figure 5) among those who tested
throughout was once every 20 minutes, which is longer than
the mean time to pass an additional test during development
(15 minutes), possibly indicating that students were often
writing code to pass several tests at a time before running
the tests to confirm.

3. Problem set predicts time worked (PS1 took 9.4 hours of pro-
gramming time on average, compared to 13.2 hours for PS2).
Therefore, we re-ran all analyses considering the problem
sets separately. We also re-ran all analyses considering only
successful users (those who submitted correct programs).

(a) For PS1 only, years of Java experience predicted cor-
rectness and grade. For the first problem set, partici-
pants with previous Java experience had an advantage:
83% success rate and average grade 74/75, versus 14%
success rate and average grade 61/75 for those who had
never used Java before. By one week later, the others
had caught up (or at least were no longer statistically
significantly behind).
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Treatment N time worked errors grade
No tool 11 10.1 (3.7) 7.6 (8.2) 59 (21)
Cont. comp. 10 10.6 (1.6) 4.1 (6.9) 62 (9)
Cont. testing 18 10.7 (4.3) 2.9 (6.9) 64 (11)

Figure 7: Effect of treatment on other success variables, as defined
in Section 4.2. “N” is the number of participants in each group.
“Time worked” is in hours for successfully completed tasks only.
“Errors” and “grade” are for all participants. Means are shown
followed by standard deviations in parentheses. No effect was sta-
tistically significant at thep = .05 level.

(b) For PS1 participants with correct programs, years of
Java IDE experience predicts time worked: those who
had previously used a Java IDE spent 7 hours, com-
pared to 13 hours for the two who reported never previ-
ously using a Java IDE. No similar effect was observed
for any other group, including PS1 participants with in-
correct programs or any group of PS2 participants.

It is worth emphasizing that we found no other statistically sig-
nificant effects. In particular, of the predictors of Section 4.2 (in-
cluding user perceptions of the experimental tools), none predicted
number of errors, time worked, or grade, except for the effects from
experience seen in PS1. The only effects on student performance
throughout the study period were the effects that continuous test-
ing and continuous compilation had in helping significantly more
students complete the assignment.

Figure 7 shows the effects, which were not significant at the
p = .05 level, of treatment for the success variables other than
completion. Time worked (among participants who completed the
assignment) shows no trend, which was counter-intuitive to us;
based on previous suggestive results [28], we had expected contin-
uous testing to reduce time worked. It may be that continuous com-
pilation and continuous testing truly had no affect on time worked,
or it may be that true positive or negative effects were masked by
Parkinson’s Law: “Work expands to fill the time available for its
completion.” That is, students may have budgeted a certain amount
of time to the problem set, worked toward that budget by either
rushing to complete if they were behind, or gold-plating for code
clarity if they were ahead, and turned in whatever they had when
time ran out.

5. QUALITATIVE RESULTS
We gathered qualitative feedback about the tools from three main

sources. All students were asked to complete an online question-
naire containing multiple-choice and free-form questions. We in-
terviewed staff members about their experiences using the tools,
helping students with them, and teaching Java while the tools were
running. Finally, some students provided direct feedback via e-
mail.

Section 5.1 discusses the results of the multiple choice questions.
The remainder of this section summarizes feedback about changes
in work habits, positive and negative impressions, and suggestions
for improvement.

5.1 Multiple choice results
Figure 8 summarizes the multiple-choice questions about expe-

riences with the tools. Participants appear to have felt that continu-
ous compilation provided somewhat more incremental benefit than
continuous testing (though the statistical evidence of Section 4.3
indicates the opposite). Impressions about both tools were positive
overall.

Continuous Continuous
compilation testing

(N=20) (N=13)
The reported errors often surprised me 1.0 0.7
I discovered problems more quickly 2.0 0.9
I completed the assignment faster 1.5 0.6
I wrote better code 0.9 0.7
I was distracted by the tool −0.5 −0.6
I enjoyed using the tool 1.5 0.6
The tool changed the way I worked 1.7
I would use the tool in 6.170 yes 94%; no 6%

. . . in my own programming yes 80%; no 20%
I would recommend the tool to others yes 90%; no 10%

Figure 8: Questionnaire answers regarding user perceptions of the
continuous testing tool. The first 6 questions were answered on
a 7-point scale ranging from “strongly agree” (here reported as 3)
through “neutral” (reported as 0) to “strongly disagree” (reported
as−3). The behavior change question is on a scale of 0 (“no”) to 3
(“definitely”).

The negative response on “I was distracted by the tool” is a pos-
itive indicator for the tools. In fact, 70% of continuous testing and
continuous compilation participants reported leaving the continu-
ous testing window open as they edited and tests were run. This
confirms that these participants did not find it distracting, because
they could easily have reduced distraction and reclaimed screen
space by closing it (and re-opening it on demand when errors were
indicated).

Especially important to us was that 94% of students wanted to
continue using the tool in the class after the study, and 80% wanted
to apply it to programming tasks outside the class. 90% would
recommend the tool to others. This showed that developers enjoyed
continuous testing, and most did not have negative impressions of
distraction or annoyance.

5.2 Changes in work habits
Participants reported that their working habits changed when us-

ing the tool. Several participants reported similar habits to one who
“got a small part of my code working before moving on to the next
section, rather than trying to debug everything at the end.” Another
said, “It was easier to see my errors when they were only with one
method at a time.” The course staff had recommended that all stu-
dents use the single-keystroke testing macro, which should have
provided the same benefits. However, some participants felt they
only got these benefits when even this small step was automated.

This blessing could also be a curse, however, exacerbating faults
in the test suites (see Section 3.3.1): “The constant testing made me
look for a quick fix rather than examine the code to see what was
at the heart of the problem. Seeing the ‘success’ message made
me think too often that I’d finished a section of code, when in fact,
there may be additional errors the test cases don’t catch.”

5.3 Positive feedback
Participants who enjoyed using the tools noted the tools’ ease of

use and the quickness with which they felt they could code. One
enjoyed watching unimplemented tests disappear as each was cor-
rectly addressed. Several mentioned enjoying freedom from the
mechanical tedium of frequent manual testing: “Once I finally fig-
ured out how it worked, I got even lazier and never manually ran the
test cases myself anymore.” One said that it is “especially useful
for someone extremely prone to stupid typo-style errors, the kind
that are obvious and easily fixable when you see the error line but
which don’t jump out at a glance.”
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Staff feedback was predominantly positive. The head TA re-
ported, “the continuous testing worked well for students. Students
used the output constantly, and they also seemed to have a great
handle on the overall environment.” Staff reported that participants
who were provided the tools for the first problem set and not for
the second problem set missed the additional functionality.

Several participants pointed out that the first two problem sets
were a special case that made continuous testing especially use-
ful. Full test suites were provided by the course staff before the
students began coding, and passing the test suite was a major com-
ponent of students’ grades on the assignments. Several participants
mentioned that they were unsure they would use continuous test-
ing without a provided test suite, because they were uncomfortable
writing their own testing code, or believed that they were incapable
of doing so. One said that “In my own programming, there are sel-
dom easily tested individual parts of the code.” It appears that the
study made participants think much more about testing and modu-
lar design, which are both important parts of the goals of the class,
and are often ignored by novice programmers. The tools are likely
to become even more useful to students as they learn these con-
cepts.

5.4 Negative feedback
Participants who didn’t enjoy using the tools often said that it

interfered with their established working habits. One said “Since
I had already been writing extensive Java code for a year using
emacs and an xterm, it simply got in the way of my work instead
of helping me. I suppose that, if I did not already have a set way of
doing my coding, continuous testing could have been more useful.”
Many felt that the reporting of compilation errors (as implemented
in the tool) was not helpful, because far too often they knew about
the errors that were reported. Others appear to have not understood
the documentation. Several didn’t understand how to get more in-
formation by clicking on the errors reported in the modeline.

Some participants believed that when the tool reported a compi-
lation or test error, that the tool had saved and compiled their code.
In fact, the tool was reporting what would happen were the user to
save, compile, and test the code. Some users were surprised when
running the tests (without saving and compiling their work) gave
different results than the hypothetical ones provided by the tool.

5.5 Suggestions for improvement
Participants had many suggestions for improving the tools. One

recommended more flexibility in its configuration. (As provided,
the tools were hardcoded to report feedback based on the staff-
provided test suite. After the study completed, students were given
instructions on using the tools with their own test suite.) Another
wanted even more sophisticated feedback, including a “guess” of
why the error is occurring. Section 9 proposes integrating continu-
ous testing with Delta Debugging [37], to provide such a hint.

5.5.1 Implementation issues
Some students were confused because continuous testing tool fil-

tered out some information from the JUnit output before displaying
it. In particular, it removed Java stack frames related to the JUnit
infrastructure. These were never relevant to the code errors, but
some users were alarmed by the differences between the continu-
ous testing output and the output of the tests when run directly with
JUnit.

When a test caused an infinite loop in the code under test, no
continuous testing feedback appeared. This is identical to the be-
havior of standard JUnit, but since students had not manually run
the tests, some thought that the tool had failed.

Some participants reported an irreproducible error in which the
results appeared not to change to reflect the state of the code under
particular circumstances. One participant reported that this hap-
pened 2 or 3 times during the two weeks of the study. These partic-
ipants still reported that they would continue using the tools in the
future, so we assume it was not a huge impediment to their work.

The most common complaint and improvement recommendation
was that on compute-bound workstations (such as a 333-MHz Pen-
tium II running a modern operating system and development envi-
ronment, or a dialup workstation shared with up to 100 other users
all running X applications), the background compilation and test-
ing processes could monopolize the processor, sometimes so much
that “cursor movement and typing were erratic and uncontrollable.”
One said that “it needs a faster computer to be worthwhile.” How-
ever, most students found the performance acceptable. We con-
clude that potential users should be warned to use a system with
acceptable performance, and that additional performance optimiza-
tions are worthwhile.

6. THREATS TO VALIDITY
Our experiment has produced statistically significant results show-

ing that for student developers using a test-first methodology, a con-
tinuous compilation tool doubles the success rate in creating a cor-
rect program, and a continuous testing tool triples the success rate.
However, the circumstances of the experiment must be carefully
considered before applying the results to a new situation.

One potential problem with the experiment is the relative inex-
perience of the participants. They had on average 2.8 years of pro-
gramming experience, but only 0.4 years of experience with Java.
Two thirds of them were not initially familiar with the notion of
regression testing. More experienced programmers might not need
the tools as much — or they might be less confused by them and
make more effective use of them. Student feedback suggests that
the benefits are most available to users who are open to new de-
velopment tools and methodologies, not those who are set in their
ways (see Sections 3.2 and 5.4).

The participants were all students; this is both a strength and
a weakness. On the plus side, use of students has several bene-
fits. The subject demographics are relatively homogeneous, each
subject performed the same task, the subjects were externally mo-
tivated to perform the task (it was part of their regular coursework,
not an invention of the experimenters), and most subjects were ex-
posed to two experimental treatments. It would be very difficult to
reproduce these conditions with professional developers [1]. For
this reason, controlled experiments in software engineering com-
monly use students.2 On the minus side, use of students limits
our ability to generalize these results to other software develop-
ers. However, the results strongly suggest that continuous com-
pilation and continuous testing are valuable at least for beginning
programmers. The enthusiastic adoption by professionals of pro-
gramming environments offering continuous compilation suggests
that its benefits are not limited to students. The qualitative feed-
back from students, from TAs, and from other experienced pro-
grammers leads us to believe that the benefits of continuous testing,
too, will apply more broadly. This hypothesis has been partially
confirmed by a very positive user response from industrial develop-
ers to the public beta release of our continuous testing plug-in for
Eclipse [30]. We emphasize, however, that there is not yet quanti-
tative evidence of general benefit. Were such evidence desired, it

2We reviewed the last two proceedings of each of ICSE, FSE, and
ISSTA. Of 5 papers that reported new controlled experiments on
humans [4, 7, 18, 19, 38], all used students.
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would require a series of experiments with a broad range of pro-
grammers and tasks. Such experiments would complement the one
we have performed, in that they would be likely to have lesser ex-
ternal threats to validity but greater internal threats to validity.

The experiment involved relatively few participants. We ad-
dressed the risk of type I error (a false alarm) by only reporting
statistically significant effects; the statistical tests account for the
number of data points. There is also a risk of type II error (a
failed alarm): only relatively large differences in effects are statisti-
cally significant. There may be other effects that are less important
(smaller in magnitude) yet would become statistically significant,
given a larger data set. The statistics that are available to us at least
indicate the most important effects.

Five participants dropped out of the study in problem set 2. They
did so simply by doing some of their work outside Emacs or off the
Athena computer system. We eliminated such participants — even
those in the control group — because we were unable to measure
their time worked and similar quantities, and could not account for
effects that the other development environments (and switching be-
tween environments) may have had on their success.

We identified several problems with the tools (Section 5.5.1).
Many of these have since been corrected, which would likely im-
prove the results for the participants who were provided the tool.
Furthermore, some students ignored the tools and thus gained no
benefit from them. The results would probably be even better had
those students used the tools.

We proposed continuous testing as an aid to a developer perform-
ing maintenance tasks such as adding functionality or refactoring in
the presence of a regression test suite (though it may also be useful
in other circumstances, such as test-first development). Continu-
ous testing can be thought of as a way of making a test suite more
valuable by using it more effectively: failing tests are discovered
more quickly than they otherwise would be. Continuous testing
is most useful when it relieves developers of difficult, lengthy, or
easily forgotten tasks, and when developers are performing main-
tenance or other tasks that are likely to introduce regression errors.
Because these circumstances were not present in our experiment,
the experiment provided a much less than ideal scenario for a con-
tinuous testing tool. Testing was easy (it required only a single
keystroke) and fast (a few seconds, see Figure 4); students were
repeatedly reminded by the course staff to test often; and initial
development tends to introduce fewer regression errors than does
maintenance. These factors suggest that use of continuous testing
in software maintenance (and in real project settings rather than the
classroom) may yield even better results than measured by this ex-
periment. As noted above, future experiments should build upon
this one to evaluate continuous testing in other environments.

In our experiment, the developers were given a test suite ahead
of time. Thus, our experimental results yield insight into the use
of continuous testing in the increasingly popular practice of test-
first development (and in certain other circumstances, such as when
striving for compatibility or interoperability with an existing sys-
tem). The experimental results are somewhat less applicable to
maintenance, as noted above. Finally, they are not applicable to
initial development in the absence of a test suite. Naturally, no test
execution methodology can help in the absence of a test suite, or
with errors that are not exposed by the test suite.

It is possible that a test execution methodology such as contin-
uous testing, by focusing the developer’s attention on the existing
test suite, could distract the developer from considering other mea-
sures of progress for their project, such as conformance to a written
specification. Our experiment does not shed light on this question,
since it used the same definition of success that the students were

judged on (passing all tests in the provided suite). One could run a
similar study in which participants were required to pass an addi-
tional test suite that was not provided to them: if the results of the
student solutions against the public suite and private suite matched,
it would provide evidence that the solutions were generally correct,
rather than simply “debugged into existence” against the public test
suite. To suggest what the results of such a study would be, we
created a new PS2 test suite containing 22 classroom tests of poly-
nomial algebra and calculus [35]. The new test suite revealed only
one new bug in one of the 17 student solutions.

7. RELATED WORK
We previously introduced the notion of continuous testing during

development to reduce wasted development time [28]. The previ-
ous work also presented a model of developer belief that, along
with a detailed record of a prior development project, enabled es-
timation of what the effects would have been, had the developer
used a different testing tool in the prior project. A case study with
one developer indicated that savings of 10–15% of development
time could be possible. This research extends the previous research
by implementing the continuous testing tool and performing a con-
trolled experiment in order to measure rather than estimate the ef-
fect of the tool, and in order to obtain qualitative feedback regard-
ing developer perceptions of the tool.

Continuous testing can be viewed as a natural extension of con-
tinuous compilation. Modern IDE’s (integrated development envi-
ronments) with continuous compilation supply the developer rapid
feedback by performing continuous parsing and compilation, in-
dicating (some) syntactic and semantic errors immediately rather
than delaying notification until the user explicitly compiles the code.
The Magpie [31] and Montana [14] systems pioneered practical in-
cremental compilation to enable continuous compilation of large
programs by only recompiling the part of a program which has
changed, and this capability is standard in IDE’s such as Eclipse
and IDEA. Our study appears to be the first to empirically evaluate
the productivity improvement provided by continuous compilation,
but our programs were small enough that incremental compilation
was unnecessary.

Continuous testing can also be viewed as a natural extension of
Extreme Programming [2], which emphasizes the importance of
unit test suites that are run very frequently to ensure that code can
be augmented or refactored rapidly without regression errors.

Continuous execution [11], Programming by Example [6, 15],
and Editing by Example [20, 17] all provide continuous feedback
to developers about the results of their program on one or more
inputs as the program changes. Our work abstracts from the entire
output to the boolean result of each individual test case.

Several other authors use terms similar to our uses of contin-
uous compilation and continuous testing. Plezbert [24] uses the
term “continuous compilation” to denote an unrelated concept in
the context of just-in-time compilation. His continuous compila-
tion occurs while the program is running to amortize or reduce
compilation costs and speed execution, not while the program is
being edited in order to assist development. Childers et al. [5] use
“continuous compilation” in a similar context. Siegel advocates
“continuous testing”, by which he means frequent manual testing
during the development process by pairs of developers [32]. Per-
petual testing or residual testing [23] (also known as “continuous
testing” [33]) monitors software forever in the field rather than be-
ing tested only by the developer; in the field, only aspects of the
software that were never exercised by developer testing need be
monitored. Software tomography [22] partitions a monitoring task
(such as testing [21]) into many small subpieces that are distributed
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to multiple sites; for instance, testing might be performed at client
sites. An enabling technology for software tomography is continu-
ous evolution of software after deployment, which permits addition
and removal of probes, instrumentation, or other code while soft-
ware is running remotely.

8. FUTURE WORK
Like any other experiment, ours has certain limitations (see Sec-

tion 6). Future research should evaluate continuous testing in new
situations, where it is as yet unproven. For instance, industrial case
studies would provide additional qualitative information regarding
continuous testing. We plan to provide continuous testing tools to
a company performing software development for real customers,
then observe and interview the developers to learn how they use
the tools, their impressions of it, and their suggestions regarding it.

In this experiment, the test suites ran very quickly, easily provid-
ing real-time notification. There are several ways to extend this to
suites that take longer to run.

First, we intend to integrate our Eclipse plug-in with one pro-
vided by Andreas Zeller that performs Delta Debugging [37]. Con-
tinuous testing gives early indication that a program change has
introduced a regression error. However, when test suites take a
long time to run, there may have been multiple program changes
between the last successful test run and the discovery of a regres-
sion error. Delta Debugging can reduce the program changes to a
minimum set that causes the regression error. Both continuous test-
ing and this application of Delta Debugging reduce the number of
program changes that a user must examine in order to understand
the cause of a regression error. By using continuous testing, then
Delta Debugging, the entire process might be made faster and more
beneficial to the developer.

Second, just as continuous compilation on large programs is in-
feasible without incremental compilation (see Section 7), continu-
ous testing on large test suites will require some form of incremen-
tal testing. For test suites with many tests, test selection [16, 10, 25]
runs only those tests that are possibly affected by the most recent
change, and test prioritization [36, 26, 34] uses the limited time
available to run the tests that are most likely to reveal a recently-
introduced error. We have taken some first steps toward showing
continuous testing can be combined with some kinds of test pri-
oritization [28], and are continuing to investigate how more tradi-
tional standard prioritization algorithms perform under continuous
testing.

However, for tests suites with long-running tests, prioritization
is insufficient: it will be necessary to use data collected on previous
test runs to run only thoseparts of tests that may reveal recently-
introduced errors, a technique we calltest factoring. For example,
if an error is introduced in the file input component of a compiler,
a full end-to-end test is not necessary to find it — it will suffice to
run only the file-input part of the test, and test that the generated
data structures match what was observed in the previous run of the
full test. We are actively investigating [29] the implementation of
test factoring and its integration with continuous testing.

9. CONCLUSION
Continuous testing continuously runs regression tests in the back-

ground as the developer edits code and notifies the developer quickly
when errors are discovered. To test the intuition that timely feed-
back is valuable for software developers (especially when the feed-
back is surprising), we augmented a development environment with
continuous testing, and conducted a controlled experiment on stu-
dent developers.

Developers with continuous testing were significantly more likely
to complete the programming task than those without, without work-
ing for a significantly longer or shorter time. This effect could not
be explained by other incidental features of the experimental setup,
such as continuous compilation, regular testing, or differences in
experience or preference. All developers in the study could manu-
ally run tests quickly with a single keystroke.

A majority of users of continuous testing had positive impres-
sions, saying that it pointed their attention to problems they would
have overlooked and helped them produce correct answers faster
and write better code. Staff said that students quickly built an in-
tuitive approach to using the additional features. 94% of users said
that they intended to use the tool on coursework after the study,
and 90% would recommend the tool to others. Few users found the
feedback distracting, and no negative effects on productivity were
observed.

Students who used continuous compilation without continuous
testing were statistically significantly more likely to complete the
assignment than those without either tool, although the benefit was
not as great as that of continuous testing. Continuous compilation
has proved a very popular feature in modern IDE’s, but ours is (to
our knowledge) the first controlled experiment to assess its effects.
The results lend weight to the claim that it improves productivity,
at least for some developers.

These positive results came despite some problems with the tools
and despite continuous testing being used in a situation in which
it does not necessarily give the most benefit: for initial develop-
ment in a situation in which tests are easy to run and complete
quickly. We have good reason to be hopeful that continuous testing
will prove useful for many kinds of software developers.
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