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Overview

• Continuous testing runs tests in the 
background to provide feedback as 
developers code.

• A controlled human experiment revealed 
that students with continuous testing:

– Were significantly more likely to complete a 
class assignment

– Took no longer to finish

– Would recommend the tool to others
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Outline

• Introduction

• Experimental Design

• Quantitative Results
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Continuous Testing

• Continuous testing 
uses excess cycles 
on a developer's 
workstation to 
continuously run 
regression tests in the 
background as the 
developer edits code.

• Developer no longer 
thinks about what to 
test when.

developer 
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system 

runs 
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system 
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about 

changes

system 

notifies 

about 

errors
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Continuous testing: 

inspired by continuous compilation
• Continuous compilation, as in Eclipse, notifies 

the developer quickly when a syntactic error is 
introduced:

• Continuous testing notifies the developer 
quickly when a semantic error is introduced:
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Previous work

• Single-developer case study [ISSRE 03]

• Upgrades of existing software with 

regression test suites.

• Test suites took minutes: test prioritization 

needed for best results

• Focus on reduced development time (10-

15%) through quick discovery of 

regression errors
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This work

• Controlled human experiment: 22 students

• Each subject performed two unrelated 
development tasks.

• Initial development: regressions not a factor, test 
suite provided in advance.

• Test suites took seconds: prioritization 
unnecessary

• Focus on productivity effects of automatic testing

• “What happens when the computer thinks about 
testing for us?”
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Experimental Questions

1. Does continuous testing improve 
productivity?

2. Are productivity benefits due to 
continuous testing, or:

a. Continuous compilation

b. Frequent testing

c. Demographics

3. Does asynchronous feedback distract 
users?

Yes

Yes

No
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Participants

• Students in MIT’s 6.170 Laboratory in 

Software Engineering class.

107 total students

34 volunteers

14.5 worked outside 

monitored environment
19.5 monitored

73 non-volunteers

25% (5.5) 

no tools

25% (5) 

compilation notification 

only

50% (9) 

compilation and test error 

notification 
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Experience

Years… Mean

…programming 2.8

…using Emacs 1.3

…using Java 0.4

…using IDE 0.2

• Relatively 

inexperienced group 

of participants
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Programming Tasks

• Participants 
completed (PS1) a 
poker game and 
(PS2) a graphing 
polynomial calculator.

• Test suites provided 
by course staff.

• To compile and run 
tests took < 5 secs.

• The provided code 
failed most tests.

PS1 PS2

participants 22 17

written lines 

of code

150 135

written 

methods

18 31

time worked 

(hours)

9.4 13.2

tests 49 82
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Emacs plug-in

• Compile and test 

– on file save

– after 15-second pause

• Display results in modeline:

– “Compilation Errors”

– “Unimplemented Tests: 45”

– “Regressions: 2”

• Clicking on modeline brings up stack 
backtrace of indicated errors.

Never

passed

Once passed,

Now failing
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Modeline screenshots
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Sources of data

• Quantitative:

– Monitored development history

– Submitted problem set solutions

– Grades

• Qualitative:

– Questionnaire from all students

– E-mail feedback from some students

– Interviews and e-mail from staff
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Outline
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Productivity measures

• time worked:  Time spent editing source 

files.

• grade: On each individual problem set.  

• correct program:  True if the student 

solution passed all tests.

• failed tests:  Number of tests that the 

student submission failed.
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Treatment predicts correctness 

(Question 1)

Treatment N Correct

programs

No tool 11 27%

Continuous compilation 10 50%

Continuous testing 18 78%

p < .03
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Can other factors explain this? 

(Question 2)

• Continuous testing: 78% vs. 27% success

• Continuous compilation: no

– Just continuous compilation: 50% success

• Frequent testing: no

– Just frequent manual testing: 33% success

• Easy testing: no

– All students could run tests with a keypress

• Demographics: no 

– No significant differences between groups
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No significant effect on other 

productivity measures

Treatment N Time worked Failed 

tests

Grade 

No tool 11 10.1 hrs 7.6 79%

Cont. comp. 10 10.6 hrs 4.1 83%

Cont. testing 18 10.7 hrs 2.9 85%

only for

correct

programs
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Other effects seen

• Students spent longer on PS2 than PS1.

• On PS1 only, Java experience improved 

correctness and grade.

• For PS1 participants with correct 

programs, previous experience with a 

Java IDE reduced time worked.

• Only effects seen at the p < .05 level.
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Outline
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Do developers enjoy the tool?

(Question 3)

(scale: +3 = strongly agree, 

-3 = strongly disagree)

Continuous 

compilation

Continuous 

testing

The reported errors often surprised me 1.0 0.7

I discovered problems more quickly 2.0 0.9

I completed the assignment faster 1.5 0.6

I enjoyed using the tool 1.5 0.6

The tool changed the way I worked 1.7 1.7

I was not distracted by the tool 0.5 0.6
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Did continuous testing win over 

users?

I would use the tool… Yes

…for the rest of the class 94%

…for my own programming 80%

I would recommend the tool to others 90%
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Participant comments, part 1

• “I got a small part of my code working 
before moving on to the next section, 
rather than trying to debug everything at 
the end.”

• “It was easier to see my errors when they 
were only with one method at a time.”

• “Once I finally figured out how it worked, I 
got even lazier and never manually ran the 
test cases myself anymore.”
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Participant comments, part 2

• “The constant testing made me look for a 

quick fix rather than examine the code to 

see what was at the heart of the problem.”

• “I suppose that, if I did not already have a 

set way of doing my coding, continuous 

testing could have been more useful.”
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Threats to validity

• Participants were undergraduates
– 2.8 years programming experience, 0.4 with Java

– Standard practice for controlled human experiments 
in software engineering

– Can’t predict the effect of more experience

• Tests existed a priori

• Small programs

• Some problems with provided tools
– scalability

– user confusion
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Future Work

• Case studies in with larger projects

– We’ve built an industrial-strength implementation in 

Eclipse, including test prioritization and selection

• Extend to bigger test suites:

– Help developers understand failures: Integrate with 

Delta Debugging (Zeller)

– Run the right tests: Better test prioritization

– Run the right parts of tests: Test factoring: making 

unit tests from system tests [PASTE 2004]
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Conclusion

• Continuous testing has a significant effect 

(78% vs. 27%) on developer success in 

completing a programming task

– without affecting time worked

• Most developers enjoy using continuous 

testing, and find it helpful

• Download Eclipse plug-in for continuous 

testing

– Google “continuous testing”



Saff, Ernst: Continuous Testing

31/29



Saff, Ernst: Continuous Testing

32/29

The End

• Thanks to:

– 6.170 staff

– Participants

– ISSTA reviewers
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Pedagogical usefulness

• Several students mentioned that 

continuous testing was most useful when:

– Code was well-modularized

– Specs and tests were written before 

development

• These are important goals of the class
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Introduction: Previous Work: 

Findings

• Finding 2: Continuous 

testing is more effective 

at reducing wasted time 

than:

– changing test frequency

– reordering tests

• Finding 3: Continuous 

testing reduces total 

development time 10 to 

15%
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Reasons cited for not participating

Don't use Emacs 45%

Don't use Athena 29%

Didn't want the hassle 60%

Feared work would be hindered 44%

Privacy concerns 7%

Students could choose as many reasons as they wished.

Other IDE’s cited, in order of popularity:

• Eclipse

• text editors (vi, pico, EditPlus2)

• Sun ONE Studio

• JBuilder
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Variables that predicted 

participation

• Students with more Java experience were less

likely to participate 

– already had work habits they didn’t want to change

• Students with more experience compiling 

programs in Emacs were more likely to 

participate

• We used a control group within the set of 

voluntary participants—results were not skewed.
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Demographics: Experience (1)

Years… Mean Min Max

…programming 2.8 0.5 14.0

…using Java 0.4 0.0 2.0

…using Emacs 1.3 0.0 5.0

… using IDE 0.2 0.0 1.0
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Problem Sets

• Participants 

completed several 

classes in a skeleton 

implementation of 

(PS1) a poker game 

and (PS2) a graphing 

polynomial calculator.

PS1 PS2

participants 22 17

total lines of 

code

882 804

skeleton 

lines of code

732 669

written lines 

of code

150 135

written 

classes

4 2

written 

methods

18 31

time worked 

(hours)

9.4 13.2
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Test Suites

• Students were 

provided with test 

suites written by 

course staff.

• Passing tests 

correctly was 75% of 

grade.

PS1 PS2

tests 49 82

initial failing 

tests

45 46

lines of 

code

3299 1444

running time 

(secs)

3 2

compilation 

time (secs)

1.4 1.4
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JUnit wrapper

Wrapper Junit

Test Suite • Reorder tests

• Time individual tests
Test Suite

Results

• Remember results

• Output failures immediately

• Distinguish regressions from 

unimplemented tests

• Reorder and filter result text

Results
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Demographics: Experience (2)

Usual environment: Unix 29%, Windows 38%, both 33%

0% 20% 40% 60% 80% 100%

Regression

Testing

Using Emacs

to compile

Using Emacs

for Java

Familiar

Unfamiliar
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More variables: where students 

spent their time
• All time measurements used time worked, at a 

five-minute resolution:

• Some selected time measurements:
– Total time worked

– Ignorance time 
• between introducing an error and becoming aware of it

– Fixing
• between becoming aware of an error and fixing it

:00 :05 :10 :15 :20 :25 :30 :35 :40 :45 :50 :55 :00

xx xx x x

x = source edit
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Ignorance and fix time

• Ignorance time and fix 

time are correlated, 

confirming previous 

result.

• Chart shown for the 

single participant with 

the most regression 

errors
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Errors over time

• Participants with no 

tools make progress 

faster at the 

beginning, then taper 

off; may never 

complete.

• Participants with 

automatic tools make 

steadier progress.
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Previous Work

• Monitored two single-developer software 

projects

• A model of developer behavior interpreted 

results and predicted the effect of changes 

on wasted time:

– Time waiting for tests to complete

– Extra time tracking down and fixing regression 

errors
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Previous Work: Findings

• Delays in notification about regression errors 

correlate with delays in fixing these errors.

• Therefore, quicker notification should lead to 

quicker fixes

• Predicted improvement: 10-15%
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Other comments

• Head TA: “the continuous testing worked well for 
students.  Students used the output constantly, 
and they also seemed to have a great handle on 
the overall environment.”

• “Since I had already been writing extensive Java 
code for a year using emacs and an xterm, it 
simply got in the way of my work instead of 
helping me. I suppose that, if I did not already 
have a set way of doing my coding, continuous 
testing could have been more useful.”

• Some didn’t understand the modeline, or how 
shadowing worked.
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Test Suites

• Students were 

provided with test 

suites written by 

course staff.

• Passing tests 

correctly was 75% of 

grade.

PS1 PS2

tests 49 82

initial failing 

tests

45 46

running time 

(secs)

3 2

compilation 

time (secs)

1.4 1.4
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Suggestions for improvement

• More flexibility in configuration

• More information about failures

• Smarter timing of feedback

• Implementation issues

– JUnit wrapper filtered JUnit output, which was 
confusing.

– Infinite loops led to no output.

– Irreproducible failures to run.

– Performance not acceptable on all machines.
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Test Suites: Usage

Participants Non-participants

waited until end to 

test

31% 51%

tested regularly 

throughout

69% 49%

Test frequency (minutes) for those who tested regularly

mean 20 18

min 7 3

max 40 60
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Shadow directory

• The developer’s code directory is 

“shadowed” in a hidden directory.

• Shadow directory has state as it would be 

if developer saved and compiled right now.

• Compilation and test results are filtered to 

appear as if they occurred in the 

developer’s code directory.
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Monitoring

• Developers who agree to the study have a 
monitoring plug-in installed at the same 
time as the continuous testing plug-in.

• Sent to a central server:

– Changes to the source in Emacs (saved or 
unsaved)

– Changes to the source on the file system 

– Manual test runs

– Emacs session stops/starts
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Error buffer screenshot
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• Preview of results:

– Continuous testing has a significant effect on 

success completing a task.

– This effect cannot be attributed to other 

factors.

– Developers enjoy using continuous testing, 

and find it helpful, not distracting.


