
An experimental evaluation

of continuous testing during

development

David Saff, Michael D. Ernst

MIT CSAIL

ISSTA 2004

Saff, Ernst: Continuous Testing

2/29

Overview

• Continuous testing runs tests in the
background to provide feedback as
developers code.

• A controlled human experiment revealed
that students with continuous testing:

– Were significantly more likely to complete a
class assignment

– Took no longer to finish

– Would recommend the tool to others

Saff, Ernst: Continuous Testing

3/29

Outline

• Introduction

• Experimental Design

• Quantitative Results

• Qualitative Results

• Conclusion

Saff, Ernst: Continuous Testing

4/29

Continuous Testing

• Continuous testing
uses excess cycles
on a developer's
workstation to
continuously run
regression tests in the
background as the
developer edits code.

• Developer no longer
thinks about what to
test when.

developer

changes

code

system

runs

tests

system

notified

about

changes

system

notifies

about

errors

Saff, Ernst: Continuous Testing

5/29

Continuous testing:

inspired by continuous compilation
• Continuous compilation, as in Eclipse, notifies

the developer quickly when a syntactic error is
introduced:

• Continuous testing notifies the developer
quickly when a semantic error is introduced:

Saff, Ernst: Continuous Testing

6/29

Previous work

• Single-developer case study [ISSRE 03]

• Upgrades of existing software with

regression test suites.

• Test suites took minutes: test prioritization

needed for best results

• Focus on reduced development time (10-

15%) through quick discovery of

regression errors

Saff, Ernst: Continuous Testing

7/29

This work

• Controlled human experiment: 22 students

• Each subject performed two unrelated
development tasks.

• Initial development: regressions not a factor, test
suite provided in advance.

• Test suites took seconds: prioritization
unnecessary

• Focus on productivity effects of automatic testing

• “What happens when the computer thinks about
testing for us?”

Saff, Ernst: Continuous Testing

8/29

Experimental Questions

1. Does continuous testing improve
productivity?

2. Are productivity benefits due to
continuous testing, or:

a. Continuous compilation

b. Frequent testing

c. Demographics

3. Does asynchronous feedback distract
users?

Yes

Yes

No

Saff, Ernst: Continuous Testing

9/29

Outline

• Introduction

• Experimental Design

• Quantitative Results

• Qualitative Results

• Conclusion

Saff, Ernst: Continuous Testing

10/29

Participants

• Students in MIT’s 6.170 Laboratory in

Software Engineering class.

107 total students

34 volunteers

14.5 worked outside

monitored environment
19.5 monitored

73 non-volunteers

25% (5.5)

no tools

25% (5)

compilation notification

only

50% (9)

compilation and test error

notification

Saff, Ernst: Continuous Testing

11/29

Experience

Years… Mean

…programming 2.8

…using Emacs 1.3

…using Java 0.4

…using IDE 0.2

• Relatively

inexperienced group

of participants

Saff, Ernst: Continuous Testing

12/29

Programming Tasks

• Participants
completed (PS1) a
poker game and
(PS2) a graphing
polynomial calculator.

• Test suites provided
by course staff.

• To compile and run
tests took < 5 secs.

• The provided code
failed most tests.

PS1 PS2

participants 22 17

written lines

of code

150 135

written

methods

18 31

time worked

(hours)

9.4 13.2

tests 49 82

Saff, Ernst: Continuous Testing

13/29

Emacs plug-in

• Compile and test

– on file save

– after 15-second pause

• Display results in modeline:

– “Compilation Errors”

– “Unimplemented Tests: 45”

– “Regressions: 2”

• Clicking on modeline brings up stack
backtrace of indicated errors.

Never

passed

Once passed,

Now failing

Saff, Ernst: Continuous Testing

14/29

Modeline screenshots

Saff, Ernst: Continuous Testing

15/29

Sources of data

• Quantitative:

– Monitored development history

– Submitted problem set solutions

– Grades

• Qualitative:

– Questionnaire from all students

– E-mail feedback from some students

– Interviews and e-mail from staff

Saff, Ernst: Continuous Testing

16/29

Outline

• Introduction

• Experimental Design

• Quantitative Results

• Qualitative Results

• Conclusion

Saff, Ernst: Continuous Testing

17/29

Productivity measures

• time worked: Time spent editing source

files.

• grade: On each individual problem set.

• correct program: True if the student

solution passed all tests.

• failed tests: Number of tests that the

student submission failed.

Saff, Ernst: Continuous Testing

18/29

Treatment predicts correctness

(Question 1)

Treatment N Correct

programs

No tool 11 27%

Continuous compilation 10 50%

Continuous testing 18 78%

p < .03

Saff, Ernst: Continuous Testing

19/29

Can other factors explain this?

(Question 2)

• Continuous testing: 78% vs. 27% success

• Continuous compilation: no

– Just continuous compilation: 50% success

• Frequent testing: no

– Just frequent manual testing: 33% success

• Easy testing: no

– All students could run tests with a keypress

• Demographics: no

– No significant differences between groups

Saff, Ernst: Continuous Testing

20/29

No significant effect on other

productivity measures

Treatment N Time worked Failed

tests

Grade

No tool 11 10.1 hrs 7.6 79%

Cont. comp. 10 10.6 hrs 4.1 83%

Cont. testing 18 10.7 hrs 2.9 85%

only for

correct

programs

Saff, Ernst: Continuous Testing

21/29

Other effects seen

• Students spent longer on PS2 than PS1.

• On PS1 only, Java experience improved

correctness and grade.

• For PS1 participants with correct

programs, previous experience with a

Java IDE reduced time worked.

• Only effects seen at the p < .05 level.

Saff, Ernst: Continuous Testing

22/29

Outline

• Introduction

• Experimental Design

• Quantitative Results

• Qualitative Results

• Conclusion

Saff, Ernst: Continuous Testing

23/29

Do developers enjoy the tool?

(Question 3)

(scale: +3 = strongly agree,

-3 = strongly disagree)

Continuous

compilation

Continuous

testing

The reported errors often surprised me 1.0 0.7

I discovered problems more quickly 2.0 0.9

I completed the assignment faster 1.5 0.6

I enjoyed using the tool 1.5 0.6

The tool changed the way I worked 1.7 1.7

I was not distracted by the tool 0.5 0.6

Saff, Ernst: Continuous Testing

24/29

Did continuous testing win over

users?

I would use the tool… Yes

…for the rest of the class 94%

…for my own programming 80%

I would recommend the tool to others 90%

Saff, Ernst: Continuous Testing

25/29

Participant comments, part 1

• “I got a small part of my code working
before moving on to the next section,
rather than trying to debug everything at
the end.”

• “It was easier to see my errors when they
were only with one method at a time.”

• “Once I finally figured out how it worked, I
got even lazier and never manually ran the
test cases myself anymore.”

Saff, Ernst: Continuous Testing

26/29

Participant comments, part 2

• “The constant testing made me look for a

quick fix rather than examine the code to

see what was at the heart of the problem.”

• “I suppose that, if I did not already have a

set way of doing my coding, continuous

testing could have been more useful.”

Saff, Ernst: Continuous Testing

27/29

Outline

• Introduction

• Experimental Design

• Quantitative Results

• Qualitative Results

• Conclusion

Saff, Ernst: Continuous Testing

28/29

Threats to validity

• Participants were undergraduates
– 2.8 years programming experience, 0.4 with Java

– Standard practice for controlled human experiments
in software engineering

– Can’t predict the effect of more experience

• Tests existed a priori

• Small programs

• Some problems with provided tools
– scalability

– user confusion

Saff, Ernst: Continuous Testing

29/29

Future Work

• Case studies in with larger projects

– We’ve built an industrial-strength implementation in

Eclipse, including test prioritization and selection

• Extend to bigger test suites:

– Help developers understand failures: Integrate with

Delta Debugging (Zeller)

– Run the right tests: Better test prioritization

– Run the right parts of tests: Test factoring: making

unit tests from system tests [PASTE 2004]

Saff, Ernst: Continuous Testing

30/29

Conclusion

• Continuous testing has a significant effect

(78% vs. 27%) on developer success in

completing a programming task

– without affecting time worked

• Most developers enjoy using continuous

testing, and find it helpful

• Download Eclipse plug-in for continuous

testing

– Google “continuous testing”

Saff, Ernst: Continuous Testing

31/29

Saff, Ernst: Continuous Testing

32/29

The End

• Thanks to:

– 6.170 staff

– Participants

– ISSTA reviewers

Saff, Ernst: Continuous Testing

33/29

Pedagogical usefulness

• Several students mentioned that

continuous testing was most useful when:

– Code was well-modularized

– Specs and tests were written before

development

• These are important goals of the class

Saff, Ernst: Continuous Testing

34/29

Introduction: Previous Work:

Findings

• Finding 2: Continuous

testing is more effective

at reducing wasted time

than:

– changing test frequency

– reordering tests

• Finding 3: Continuous

testing reduces total

development time 10 to

15%

Wasted Time Reduction by Continuous Testing

0

0.02

0.04

0.06

0.08

0.1

0.12

Observed Changing Test

Frequency

Reordering

Tests

Continuous

Testing

Test Ordering

W
a
s
te

d
 T

im
e
 /

 T
o

ta
l

T
im

e

Regret

Test-wait

Saff, Ernst: Continuous Testing

35/29

Reasons cited for not participating

Don't use Emacs 45%

Don't use Athena 29%

Didn't want the hassle 60%

Feared work would be hindered 44%

Privacy concerns 7%

Students could choose as many reasons as they wished.

Other IDE’s cited, in order of popularity:

• Eclipse

• text editors (vi, pico, EditPlus2)

• Sun ONE Studio

• JBuilder

Saff, Ernst: Continuous Testing

36/29

Variables that predicted

participation

• Students with more Java experience were less

likely to participate

– already had work habits they didn’t want to change

• Students with more experience compiling

programs in Emacs were more likely to

participate

• We used a control group within the set of

voluntary participants—results were not skewed.

Saff, Ernst: Continuous Testing

37/29

Demographics: Experience (1)

Years… Mean Min Max

…programming 2.8 0.5 14.0

…using Java 0.4 0.0 2.0

…using Emacs 1.3 0.0 5.0

… using IDE 0.2 0.0 1.0

Saff, Ernst: Continuous Testing

38/29

Problem Sets

• Participants

completed several

classes in a skeleton

implementation of

(PS1) a poker game

and (PS2) a graphing

polynomial calculator.

PS1 PS2

participants 22 17

total lines of

code

882 804

skeleton

lines of code

732 669

written lines

of code

150 135

written

classes

4 2

written

methods

18 31

time worked

(hours)

9.4 13.2

Saff, Ernst: Continuous Testing

39/29

Test Suites

• Students were

provided with test

suites written by

course staff.

• Passing tests

correctly was 75% of

grade.

PS1 PS2

tests 49 82

initial failing

tests

45 46

lines of

code

3299 1444

running time

(secs)

3 2

compilation

time (secs)

1.4 1.4

Saff, Ernst: Continuous Testing

40/29

JUnit wrapper

Wrapper Junit

Test Suite • Reorder tests

• Time individual tests
Test Suite

Results

• Remember results

• Output failures immediately

• Distinguish regressions from

unimplemented tests

• Reorder and filter result text

Results

Saff, Ernst: Continuous Testing

41/29

Demographics: Experience (2)

Usual environment: Unix 29%, Windows 38%, both 33%

0% 20% 40% 60% 80% 100%

Regression

Testing

Using Emacs

to compile

Using Emacs

for Java

Familiar

Unfamiliar

Saff, Ernst: Continuous Testing

42/29

More variables: where students

spent their time
• All time measurements used time worked, at a

five-minute resolution:

• Some selected time measurements:
– Total time worked

– Ignorance time
• between introducing an error and becoming aware of it

– Fixing
• between becoming aware of an error and fixing it

:00 :05 :10 :15 :20 :25 :30 :35 :40 :45 :50 :55 :00

xx xx x x

x = source edit

Saff, Ernst: Continuous Testing

43/29

Ignorance and fix time

• Ignorance time and fix

time are correlated,

confirming previous

result.

• Chart shown for the

single participant with

the most regression

errors

Saff, Ernst: Continuous Testing

44/29

Errors over time

• Participants with no

tools make progress

faster at the

beginning, then taper

off; may never

complete.

• Participants with

automatic tools make

steadier progress.

Saff, Ernst: Continuous Testing

45/29

Previous Work

• Monitored two single-developer software

projects

• A model of developer behavior interpreted

results and predicted the effect of changes

on wasted time:

– Time waiting for tests to complete

– Extra time tracking down and fixing regression

errors

Saff, Ernst: Continuous Testing

46/29

Previous Work: Findings

• Delays in notification about regression errors

correlate with delays in fixing these errors.

• Therefore, quicker notification should lead to

quicker fixes

• Predicted improvement: 10-15%

Saff, Ernst: Continuous Testing

47/29

Other comments

• Head TA: “the continuous testing worked well for
students. Students used the output constantly,
and they also seemed to have a great handle on
the overall environment.”

• “Since I had already been writing extensive Java
code for a year using emacs and an xterm, it
simply got in the way of my work instead of
helping me. I suppose that, if I did not already
have a set way of doing my coding, continuous
testing could have been more useful.”

• Some didn’t understand the modeline, or how
shadowing worked.

Saff, Ernst: Continuous Testing

48/29

Test Suites

• Students were

provided with test

suites written by

course staff.

• Passing tests

correctly was 75% of

grade.

PS1 PS2

tests 49 82

initial failing

tests

45 46

running time

(secs)

3 2

compilation

time (secs)

1.4 1.4

Saff, Ernst: Continuous Testing

49/29

Suggestions for improvement

• More flexibility in configuration

• More information about failures

• Smarter timing of feedback

• Implementation issues

– JUnit wrapper filtered JUnit output, which was
confusing.

– Infinite loops led to no output.

– Irreproducible failures to run.

– Performance not acceptable on all machines.

Saff, Ernst: Continuous Testing

50/29

Test Suites: Usage

Participants Non-participants

waited until end to

test

31% 51%

tested regularly

throughout

69% 49%

Test frequency (minutes) for those who tested regularly

mean 20 18

min 7 3

max 40 60

Saff, Ernst: Continuous Testing

51/29

Shadow directory

• The developer’s code directory is

“shadowed” in a hidden directory.

• Shadow directory has state as it would be

if developer saved and compiled right now.

• Compilation and test results are filtered to

appear as if they occurred in the

developer’s code directory.

Saff, Ernst: Continuous Testing

52/29

Monitoring

• Developers who agree to the study have a
monitoring plug-in installed at the same
time as the continuous testing plug-in.

• Sent to a central server:

– Changes to the source in Emacs (saved or
unsaved)

– Changes to the source on the file system

– Manual test runs

– Emacs session stops/starts

Saff, Ernst: Continuous Testing

53/29

Error buffer screenshot

Saff, Ernst: Continuous Testing

54/29

• Preview of results:

– Continuous testing has a significant effect on

success completing a task.

– This effect cannot be attributed to other

factors.

– Developers enjoy using continuous testing,

and find it helpful, not distracting.

