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ABSTRACT

Modern software often exposes configuration options that enable
users to customize its behavior. During software evolution, devel-
opers may change how the configuration options behave. When
upgrading to a new software version, users may need to re-configure
the software by changing the values of certain configuration options.

This paper addresses the following question during the evolution
of a configurable software system: which configuration options
should a user change to maintain the software’s desired behavior?
This paper presents a technique (and its tool implementation, called
ConfSuggester) to troubleshoot configuration errors caused by soft-
ware evolution. ConfSuggester uses dynamic profiling, execution
trace comparison, and static analysis to link the undesired behav-
ior to its root cause — a configuration option whose value can be
changed to produce desired behavior from the new software version.

We evaluated ConfSuggester on 8 configuration errors from 6
configurable software systems written in Java. For 6 errors, the root-
cause configuration option was ConfSuggester’s first suggestion.
For 1 error, the root cause was ConfSuggester’s third suggestion.
The root cause of the remaining error was ConfSuggester’s sixth
suggestion. Overall, ConfSuggester produced significantly better
results than two existing techniques. ConfSuggester runs in just a
few minutes, making it an attractive alternative to manual debugging.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging.
General Terms: Reliability, Experimentation.
Keywords: Configuration error diagnosis, Software evolution.

1. INTRODUCTION
Many modern software systems support a range of configuration

options for users to customize their behavior. This flexibility has
a cost: a small configuration error may cause hard-to-diagnose
behavior.

Software configuration errors are errors in which the software
code and the input are correct, but the an incorrect value is used
for a configuration option so that the software does not behave
as desired. Such errors may lead the software to crash, produce
erroneous output, or simply perform poorly. In practice, software
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configuration errors are prevalent, severe, and hard to debug, but
they are actionable for users to fix.

Prevalent. A recent analysis of Yahoo’s mission-critical Zookeeper
service showed that software misconfigurations accounted for the
majority of all user-visible failures [52]. Configuration-related is-
sues caused about 31% of all failures at a commercial storage com-
pany [69]. The vast majority of production failures at Google arise
not due to bugs in the software, but bugs in the configuration settings
(i.e., configuration errors) that control the software [15].

Severe. Configuration errors can have disastrous impacts. For
example, an outage in Facebook due to an incorrect configuration
value left the website inaccessible for about 2 hours [14]. The entire
.se domain of Sweden was unavailable for about 1 hour, due to
a DNS misconfiguration problem [49]. A misconfiguration made
Microsoft’s public cloud platform, Azure, unavailable for about two
and a half hours [40]. Each such incident affected millions of users.

Hard to debug. Configuration errors are difficult to diagnose.
They usually require great expertise to understand the error root
causes. For example, a configuration error in the CentOS kernel
prevented a user from mounting a newly-created file system [69].
The user needed deep understanding about the exhibited symptom,
and had to re-install kernel modules and also modify configuration
option values in several places to get it to work. Techniques to help
escape from “configuration hell” are highly demanded [15].

Actionable. Unlike software bugs, which can only be fixed by ex-
perienced software developers, fixing a software configuration error
is actionable for software end-users or system administrators. These
users are not the software developers, and cannot access (much less
understand) the source code; but they can fix a configuration error
by simply changing the values of certain configuration options.

1.1 Configuration Evolution
Continual change is a fact of life for software systems. Among

software changes, configuration changes are prevalent. We studied
8 real-world configurable software systems (Section 2), and found
configuration changes in every studied version of each system. In
many cases, reusing the old version’s configuration can lead the new
software version to exhibit undesired behaviors, even if the software
is working exactly as designed.

Take the popular JMeter performance testing tool as an example.
In version 2.8, the testing report is saved as an XML file after run-
ning an example command (jmeter -n -t ../threadgroup.jmx -l

../output.jtl -j ../test.log) from the user manual. However,
after upgrading to version 2.9, the same command saves the testing
report in a CSV file. Further, all JMeter regression tests pass on the
updated version. The new JMeter version behaves as designed but
differently than a user was expecting.

Our technique (and its tool implementation ConfSuggester) can
help diagnose configuration errors. For the JMeter example, a user
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first demonstrates the different behaviors on two ConfSuggester-
instrumented JMeter versions. Then, ConfSuggester analyzes the
recorded execution traces produced by the two instrumented ver-
sions, and outputs a ranked list of suspicious configuration op-
tions that may need to be changed. At the top of the list is the
output format option with a default value of CSV in version 2.9. To
resolve this problem, users only need to change its value to XML.

1.2 Configuration Option Recommendation
Broadly speaking, diagnosing a configuration error can be divided

into three separate tasks: reproducing the error, recommending
which specific configuration option is responsible for the undesired
behavior, and determining a better value for the configuration option
to fix the error. ConfSuggester addresses the second task: recom-
mending the root-cause configuration option.

ConfSuggester specifically focuses on software configuration er-
rors and aims to help two types of users: software end-users who
may have problems with software installed on their personal comput-
ers, and system administrators who are responsible for maintaining
production systems. They can use ConfSuggester to diagnose an
unexpected configuration problem during software evolution.

The key idea of ConfSuggester is to approximate program behav-
ioral differences by control flow differences between two executions
(by running the old and new program versions, respectively), and
then reason about the control flow differences to identify configura-
tion options that might cause such differences. It uses three steps,
as illustrated in Figure 5, to link the undesired behavior to specific
root-cause configuration options:

• Instrumentation and Profiling. ConfSuggester instruments both
the old and new program versions to monitor the execution of
each statement as well as the evaluation result of every predicate.
Then, it asks the user to demonstrate the different behaviors on
the two instrumented program versions.
• Execution Trace Comparison. ConfSuggester analyzes the two

execution traces to identify the control flow differences. Conf-
Suggester identifies program predicates that behave differently
between the two versions. These behaviorally-deviated predicates
and their affected program statements provide evidence about
which parts of a program might be behaving abnormally and why.
• Configuration Option Recommendation. ConfSuggester uses

a lightweight static dependence analysis technique, called thin
slicing [53], to attribute control flow differences to specific con-
figuration options. Finally, it outputs a ranked list of suspicious
options to the users.

Compared to existing error diagnosis techniques [4–6, 47, 55, 63,
66, 74], ConfSuggester differs in four key aspects:

• It diagnoses configuration errors caused by software evolu-

tion. Most existing configuration error diagnosis techniques iden-
tify errors from a single program version [4–6, 47, 55, 63, 66, 74].
By contrast, ConfSuggester is cognizant of software evolution and
works on two different versions of the same program. It uses the
desired behavior of the old software version as a baseline against
which to compare new program behavior, and only reasons about
the behavioral differences.
• It requires no testing oracle. Some previous work [6,47,55,66]

requires the user to answer difficult questions like “is the soft-
ware currently working?” or “why is the software not working?”
by writing a testing oracle to check the software behavior. By
contrast, ConfSuggester only requires users to demonstrate the
different behaviors on two versions. ConfSuggester uses the exe-
cution trace produced by the old version as an approximate oracle
to reason about the undesired behavior on the new version.

• It determines likely root-cause options. Many error diagnosis
and debugging techniques [71,75] primarily focus on determining
what causes the undesired behaviors, e.g., a snippet of code —
they leave the more challenging question of how to fix the unde-
sired behaviors unanswered. The user must manually inspect the
analysis report to infer the root cause, e.g., a configuration option.
By contrast, ConfSuggester makes reports in terms that end-users
can act on: it explicitly guides users to specific configuration
options that may fix the error.
• It requires no OS-level support. ConfSuggester does not need

alterations to the JVM, operating system, or standard library.
This makes ConfSuggester more portable and distinguishes it
from related techniques, such as OS-level configuration error
diagnosis [55, 66].

1.3 Evaluation
We implemented ConfSuggester for Java software and empiri-

cally evaluated its effectiveness using 8 configuration errors from
6 open-source configurable Java software systems. We used Conf-
Suggester to recommend configuration options whose values can be
changed to fix each error. ConfSuggester successfully recommended
correct configuration options for all 8 errors. For 6 errors, the correct
option was ConfSuggester’s first suggestion. For 1 error, the correct
option was ConfSuggester’s third suggestion. The root cause of the
remaining error was ConfSuggester’s sixth suggestion. ConfSug-
gester is fast enough for practical use, taking less than 3.1 minutes,
on average, to diagnose each configuration error. ConfSuggester’s
accuracy and speed make it a promising technique.

We compared ConfSuggester to two existing configuration er-
ror diagnosis techniques, called ConfDiagnoser [74] and ConfAna-
lyzer [47]. ConfDiagnoser assumes the existence of some correct
execution traces on the new program version; by contrast, ConfSug-
gester eliminates the assumption. ConfAnalyzer exclusively focuses
on diagnosing crashing configuration errors; by contrast, ConfSug-
gester can diagnose both crashing errors and non-crashing errors.
Our experiments show that ConfSuggester significantly outperforms
these two existing techniques.

Finally, we evaluated two internal design choices of ConfSug-
gester. First, we showed that using thin slicing [53] is a better choice
than traditional full slicing [22] to reason about root-cause configu-
ration options. Second, we showed that ConfSuggester outperforms
an alternative approach that solely uses predicate behavior change
to reason about the root-cause configuration options.

1.4 Contributions
This paper makes the following main contributions:

• Study of configuration changes. We describe an empirical study
of 8 configurable software systems. Our study indicates that
configuration changes are frequent during software evolution
(Section 2).
• Technique. We present a technique to diagnose configuration

errors for evolving software. Our technique links undesired be-
haviors to specific responsible configuration options (Section 3).
• Implementation. We implemented our technique in a tool, called

ConfSuggester, for Java software (Section 4). It is publicly avail-
able at: http://config-errors.googlecode.com.
• Evaluation. We applied ConfSuggester to 8 configuration errors

from 6 configurable software systems, and compared it with
existing techniques. The results show the accuracy and efficiency
of ConfSuggester (Section 5).
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Program Versions Years LOC (latest version) Language

MySQL 5.1, 5.5, 5.6, 5.7 3 1565212 C/C++
Apache 2.0, 2.2, 2.4 3 139178 C/C++
Firefox 7.0–22.0 (16 versions) 3 8237915 C/C++
Randoop 1.2.1, 1.3.2, 1.3.3 6 19511 Java
Weka 3.4, 3.5, 3.6, 3.7 2 288369 Java
JChord 1.0, 2.0, 2.1 4 26617 Java
Synoptic 0.04, 0.05, 0.1 2 19153 Java
JMeter 2.6, 2.7, 2.8, 2.9 2 91979 Java

Figure 1: The open-source software systems we studied and

their characteristics. Column “Years” is the active develop-

ment period for the selected versions.

Program # Added Options # Deleted Options # Modified Options

MySQL 26 24 23
Apache 5 0 10
Firefox 28 7 56
Randoop 37 26 2
Weka 72 4 13
JChord 13 10 5
Synoptic 3 0 2
JMeter 17 3 12

Total 201 70 123

Figure 2: The total number of new, deleted, and modified con-

figuration options for each subject program.

2. REAL­WORLD CONFIGURATION

CHANGES
In the software engineering literature, despite a rich body of

software change analysis work [11, 12, 35, 58, 70, 77], software
configuration changes across multiple versions are less studied. Do
configuration changes arise during software evolution in practice?
This section describes an initial study of 8 real-world configurable
systems to answer this question.

2.1 Subject Programs and Study Methodology
Figure 1 lists 8 open-source configurable systems used in our

study. MySQL [41] is a popular relational database management
system. Apache [1] has been the dominant HTTP server on the
Internet since 1996. Firefox [16] is an open-source browser available
on multiple platforms. Randoop [48] is an automated test generator
for Java programs. Weka [65] is a toolkit that implements machine
learning algorithms. JChord [25] is a program analysis platform that
enables users to design and implement static and dynamic program
analyses for Java. Synoptic [57] mines a finite state machine model
representation of a system from logs. JMeter [27] is a tool to load-
test functional behavior and measure performance. Each program is
highly configurable, and has evolved over a considerable amount of
time for the selected versions (2–6 years).

In our study, we manually examined the revision history of each
subject program, and searched for 5 keywords (“configuration op-
tion”, “add option”, “delete option”, “rename option”, and “change
option”) in commit messages and in the change logs. We searched
7022 commit messages and 28 change log entries, in which 422
commit messages and 28 change log entries were matched. For each
match, we read the description of the change and the “diff” of the
original file to check whether a configuration option is changed. We
collected 394 distinct configuration changes in total.

2.2 Findings
Figure 2 summarizes the identified configuration changes for

each subject program. Figure 4 further classifies the configuration

Change Type Description

Bugs Fix existing bugs
Renaming Change the option name
Features Add, remove, or modify features

Reliability Improve reliability or performance

Figure 3: Types of configuration changes identified in our study

from the subject programs in Figure 1.

Program # Changed Configuration Options
Bugs Renaming Features Reliability

MySQL 0 15 55 3
Apache 0 0 11 4
Firefox 28 0 55 8
Randoop 0 2 62 1
Weka 1 0 81 8
JChord 0 2 24 2
Synoptic 0 5 0 0
JMeter 7 0 18 7

Total 36 24 301 33

Figure 4: The number of configuration changes of each type.

changes into four categories shown in Figure 3 (each change belongs
to a single category)1.

As shown in Figure 2, configuration changes occur in the evolu-
tion of every subject program. In fact, they occur in every version of
each subject program (not shown in Figure 2, due to space limits).

As shown in Figure 4, feature-related configuration changes are
the largest group across all subject programs. These changes in-
clude adding new configuration options, deleting existing options,
or modifying the default value of an option.

Configuration evolution can have unexpected impacts on program
behavior. After configuration changes, reusing an old configuration
may yield a misconfiguration, causing different results on the new
version. Section 5 shows concrete examples.

2.3 Threats to Validity
Our findings apply in the context of our subject programs and

methodology; they might not apply to arbitrary programs.
The configuration changes identified by our methodology are

certainly not complete. Our keyword search might have missed
some configuration changes. Our methodology only studies changes
that are directly made to a software configuration option. We may
miss code or environment changes that indirectly affect the software
behavior and require users to re-configure the new software version.

3. TECHNIQUE
ConfSuggester models a configuration as a set of key-value pairs,

where the keys are strings and the values have arbitrary type.

3.1 Overview
ConfSuggester is based on two key insights. First, a program’s

control flow, rather than data flow, often propagates the majority of
the effects of a configuration option. In other words, a configuration
option is mainly used as a “flag” that affects the program behavior
by changing the runtime execution path. Second, the control flow
differences between two execution traces approximate the behavioral
differences of two versions; they provide evidence about which parts
of the program are behaving abnormally and why.

Based on these two insights, ConfSuggester uses three steps to
link different behaviors across program versions to specific con-

1The “Bugs” change type in Figure 3 represents that fixing some
bugs led to changes in configurations rather than fixing some buggy
configurations.
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Figure 5: The architecture of our ConfSuggester technique. The instrumented program versions and two execution traces are

produced by the step in Section 3.2. The “Execution Trace Comparison” step is described in Section 3.3. The “Configuration Option

Recommendation” step is described in Section 3.4.

figuration options that cause the difference. Figure 5 sketches the
high-level workflow of ConfSuggester. In the first step, ConfSug-
gester asks the user to demonstrate the different behaviors, using the
same input and configuration, on two ConfSuggester-instrumented
program versions (Section 3.2). Then, ConfSuggester identifies
the control flow differences between the two execution traces pro-
duced by user demonstration. In particular, ConfSuggester identifies
program predicates that behave differently across the two execu-
tions (Section 3.3). After that, ConfSuggester uses a lightweight
dependence analysis technique, called thin slicing [53], to statically
reason about which configuration options may cause the control
flow differences. Finally, ConfSuggester reports a ranked list of
suspicious configuration options to the user (Section 3.4).

3.2 Instrumentation and Demonstration
ConfSuggester first instruments both the old and new program ver-

sions to monitor the program execution at runtime. ConfSuggester
directly instruments the bytecode. The instrumentation consists of
two parts:
• For each program predicate (i.e., a branch instruction in bytecode),

ConfSuggester inserts one probe before and one probe after it to
monitor how frequently the predicate is executed and how often
the predicate evaluates to true. In our context, a predicate is a
Boolean expression in a conditional or loop statement, whose
evaluation result affects the program control flow by determining
whether to execute the following statement or not.
• For each of the other statements, ConfSuggester inserts one probe

before it to monitor whether the statement gets executed or not
at runtime. The statement execution information is used to calcu-
late the number of executed statements controlled by a predicate
(Section 3.4).

After instrumentation, ConfSuggester asks the user to demon-
strate the different behaviors on the two instrumented program ver-
sions, using the same input and configuration. Demonstration is one
of the simplest ways for an end-user to describe her problem; and it
is easier than writing specifications or scripts of any form.

Executing the instrumented program produces an execution trace,
which consists of a sequence of executed statements as well as
the execution count and evaluation result of each predicate. The
execution trace captured by ConfSuggester is by no means complete
in recording the full program behavior; it only captures the control
flows a program is taking. As demonstrated in our experiments,
such control flow information serves as a good approximation to
diagnose the undesired program behavior.

3.3 Execution Trace Comparison
In this step, ConfSuggester compares two execution traces from

two program versions and identifies the control flow differences

between them. ConfSuggester focuses on the recorded behavior of
each predicate. First, it statically matches each predicate in the old
source code to its counterpart in the new source code (Section 3.3.1).
Then, it identifies all predicates that behave differently across the
execution traces (Section 3.3.2).

3.3.1 Matching Predicates across Versions

For each predicate recorded in the old execution trace, ConfSug-
gester matches it in the new program version to identify its possibly-
updated counterpart. The predicate-matching process proceeds in
two steps. First, ConfSuggester finds corresponding methods. Then,
ConfSuggester matches predicates within matched methods.

To match methods, ConfSuggester uses the first of these two
strategies that succeeds:

1. Identical method name. Return a method with the identical
fully-qualified name in the new version.

2. Similar method content. Return the method with the most simi-
lar content in the new version. Given a method in the old program
version, ConfSuggester uses the algorithm shown in Figure 6
(details are discussed below) to match it to every method in the
new program version, and then chooses the method in the new
program version with the most matched statements.
After running the matching algorithm, ConfSuggester further
checks the ratio of matched statements in the old method, and
discards method candidates whose matching ratio is below a
threshold (default value: 0.9).

If there is no match for the declaring method in the new pro-
gram version, ConfSuggester concludes that the predicate cannot be
matched. Otherwise, ConfSuggester runs the algorithm in Figure 6
(or looks up a cached version of the result) to establish the mapping
between instructions, and then returns the matched instruction of
the predicate (or null if the predicate cannot be matched).

Statement-matching algorithm. The algorithm in Figure 6 is in-
spired by the JDiff program differencing algorithm [3]. The original
JDiff algorithm is based on a method-level representation (called
hammocks) that models object-oriented features. It works in a hier-
archical way by first identifying matched classes and then matched
method pairs, and uses textual similarity to compare two program
statements. By contrast, our algorithm directly works on the byte-
code, using the program control flow graph representation to estab-
lish the matching between statements.

In Figure 6, ConfSuggester first constructs the control flow graphs
of two given methods (lines 2–3), then pushes their entry nodes
(a synthetic node for each method) onto a worklist stack (line 5),
which retains the next statement pair for comparison. The algorithm
repeatedly pops a statement pair from the stack (line 7) and decides
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Auxiliary functions:
matches(s, s′): return whether two statements s and s′ are matched.
Details are explained in Section 3.3.1.
BFS(s, cfg, d): return a list of statements reachable from statement
s in cfg within d graph edges in Breath-First Search (BFS) order.
firstMatchedPair(stmtList1, stmtList2): return the first matched
statement pair 〈s, s′〉 such that s ∈ stmtList1, s′ ∈ stmtList2, and
matches(s,s′) return true. Return null if no such pair exists.

Input: two methods from two software versions: mold and mnew,
a maximum lookahead value lh. (Our experiment uses lh = 5.)

Output: matched statements between mold and mnew.
matchStatements(mold , mnew, lh)

1: matchedStmts← new Map〈Statement, Statement〉
2: cfgold ← constructControlFlowGraph(mold)
3: cfgnew ← constructControlFlowGraph(mnew)
4: stack← new Stack〈Pair〈Statement, Statement〉〉
5: stack.push(cfgold .entry, cfgnew.entry)
6: while stack is not empty do

7: 〈stmtold , stmtnew〉 ← stack.pop()
8: if matchedStmts.keys().contains(stmtold)

|| matchedStmts.values().contains(stmtnew) then

9: continue

10: end if

11: matchedPair← null
12: if matches(stmtold , stmtnew) then

13: matchedStmts[stmtold]← stmtnew

14: matchedPair← 〈stmtold , stmtnew〉
15: else

16: stmtListold ← BFS(stmtold , cfgold , lh)
17: stmtListnew ← BFS(stmtnew, cfgnew, lh)
18: 〈sold , snew〉 ← firstMatchedPair(stmtListold , stmtListnew)
19: if 〈sold , snew〉 6= null then

20: matchedStmts[sold]← snew

21: matchedPair← 〈sold , snew〉
22: end if

23: end if

24: if matchedPair 6= null then

25: for each s in BFS(matchedPair.first(), cfgold , 1) do

26: for each s′ in BFS(matchedPair.second(), cfgnew, 1) do

27: stack.push(〈s, s′〉)
28: end for

29: end for

30: end if

31: end while

32: return matchedStmts

Figure 6: Algorithm for matching statements from two meth-

ods.

whether the two statements are matched (line 12). Each statement
appears at most once in the result (lines 8–9).

The algorithm decides whether two statements are matched by
using the matches(s, s′) auxiliary function. Method matches(s, s′)
returns true if both s and s′ have the same statement type (i.e., the
same instruction type in bytecode), and if s and s′ are field-accessing
or method-invoking statements, the same field or method is accessed
or invoked by both statements. Such approximate matching tolerates
small differences between two versions, such as changes to constant
values.

If two statements are matched, the algorithm saves them in the
result map (line 13). Otherwise, the algorithm compares each state-
ment reachable within lh control flow graph edges (lines 16–22).
Doing so permits the algorithm to tolerate some small changes in the
method code, and attempts to match as many statements as possible.

When two matched statements are found (stored in the matchedPair

variable in lines 14 or 21), the algorithm pushes every pair of their
successor statements onto the stack (line 27). It terminates after
every statement has been attempted to match.

3.3.2 Identifying Behaviorally­Deviated Predicates

Using the predicate matching information, ConfSuggester next
identifies predicates that behave differently between two versions.

Given an execution trace T , ConfSuggester characterizes a predi-
cate p’s behavior by how often it is evaluated (i.e., the number of
observed executions) and how often it evaluates to true (i.e., the “true
ratio”). The true ratio is an important characteristic of a predicate’s
behavior, but it is less dependable the fewer times the predicate has
been executed.

ConfSuggester combines the true ratio and number of executions
by computing their harmonic mean.

φ(p,T ) =
2

1
trueRatio(p,T )

+ 1
totalExecNum(p,T )

In φ(p,T ), trueRatio(p,T ) returns the proportion of executions of
the predicate p that evaluated to true in T , and totalExecNum(p,T )
returns the the total number of observed executions of predicate p in
T . To smooth corner cases, φ(p,T ) returns 0, if a predicate p is not
executed in T (i.e., totalExecNum(p,T ) = 0) or a predicate p’s true
ratio is 0 (i.e., trueRatio(p,T ) = 0). We let φ(null,T ) = 0 for all T .

Given two matched predicates p1 and p2 from two different exe-
cution traces T1 and T2, ConfSuggester uses the deviation function
defined in Figure 7 to compute the behavioral deviation value. In
Figure 7, the deviation function discards a predicate pair whose be-
havioral deviation value is less than a pre-defined threshold (line 2).
This is for tolerating small non-determinism during program execu-
tion and making ConfSuggester focus on predicates with substantial
behavioral differences.

The identified behaviorally-deviated predicates indicate different
control flow taken between two versions under the same input and
configuration. Such control flow differences are useful in explaining
which part of the program might be behaving unexpectedly.

3.4 Configuration Option Recommendation
In this step, ConfSuggester attributes the control flow differences

to one or more root-cause configuration options. The key idea is
to identify configuration options that may affect the behaviorally-
deviated predicates, and then rank these options by the deviation
value (computed by the deviation function in Figure 7) and the
number of executed statements they control (computed by the get-
ExecutedStmtNum auxiliary function in Figure 7).

To identify the configuration options that can affect a predicate, a
straightforward way is to use program slicing [64] to compute a for-
ward slice from the initialization statement of a configuration option,
and then check whether the predicate is in the slice. Unfortunately,
traditional full slicing [64] would produce unusably large slices due
to its conservatism.

To address this limitation, ConfSuggester uses thin slicing [53] to
identify configuration options that directly affect a predicate. Dif-
ferent from traditional full slicing, thin slicing only follows the data
flow dependencies from the slicing criterion (i.e., the initialization
statement of a configuration option) and ignores control flow de-
pendencies as well as uses of base pointers. Using thin slicing,
ConfSuggester separates pointer computations from the flow of
configuration option values and naturally connects a configuration
option with its affected statements by the data flow dependencies.
Section 5.3.4 empirically demonstrates that using traditional full
slicing will decrease the accuracy of ConfSuggester.

156



Auxiliary functions:

getPredicates(T): return all executed predicates in the execution
trace T .
getAffectingOptions(p, V): use thin slicing [53] to compute all
configuration options that may affect predicate p in the software
version V .
getExecutedStmtNum(p, V , T): return the number of executed state-
ments (controlled by predicate p) in trace T from software version
V .
deviation(p1, T1, p2, T2):

1: result← |φ(p1, T1) − φ(p2, T2)|
{δ is a pre-defined threshold with default value: 0.1}

2: if result < δ then

3: result = 0
4: end if

5: return result

Input: two software versions: Vold and Vnew.
two execution traces: Told and Tnew, on the respective versions.
a map of matched statements between Vold and Vnew : stmtMap.

Output: a ranked list of likely root-cause configuration options

recommendOptions(Vold , Vnew, Told , Tnew, stmtMap)

1: optionMap← new Map〈Option, Float〉
{Each entry of optionMap is initialized to 0.}

2: for each pold in getPredicates(Vold) do

3: d← deviation(pold , Told , stmtMap[pold], Tnew)
4: optionsold ← getAffectingOptions(pold , Vold)
5: w← d × getExecutedStmtNum(pold , Vold , Told)
6: for each Option option in optionsold do

7: optionMap[option]← optionMap[option] + w

8: end for

9: end for

10: for each pnew in getPredicates(Vnew) do

11: d← deviation(stmtMap−1[pnew], Told , pnew, Tnew)
12: optionsnew ← getAffectingOptions(pnew, Vnew)
13: w← d × getExecutedStmtNum(pnew, Vnew, Tnew)
14: for each Option option in optionsnew do

15: optionMap[option]← optionMap[option] + w

16: end for

17: end for

18: return optionMap.sortedKeys()

Figure 7: Algorithm for recommending configuration options.

Function deviation is a helper function to compute the devia-

tion value between two predicates p1 and p2, and function φ
used in deviation is defined in Section 3.3.2.

To reason about the root-cause configuration options, ConfSug-
gester associates each configuration option with a weight, which
represents the strength of the causal relationship between the config-
uration option and the execution differences. A larger weight value
indicates that a configuration option potentially contributes more to
the control flow differences as its value propagates in the program,
and thus the configuration option is more likely to be the root cause.

Figure 7 presents the configuration option recommendation al-
gorithm. For each behaviorally-deviated predicate in an execution
trace, ConfSuggester first attributes the deviated behavior to its af-
fecting configuration options (lines 4 and 12). Then, ConfSuggester
computes the number of executed statements controlled by that pred-
icate (lines 5 and 13). To do so, the getExecutedStmtNum auxiliary
function first statically examines the source code to compute the
immediate post-dominator statement [61] of a predicate, and then
traverses the execution trace to count the number of statements that
are executed between the predicate and its post-dominator statement.

ConfSuggester multiples a predicate’s deviation value by the num-
ber of executed statements, and then updates the weight of each
affecting configuration option (lines 5–8 and 13–16). Finally, Conf-
Suggester ranks all affecting configuration options in decreasing
order by weight, outputting a ranked list of suspicious options that
might be responsible for the behavioral differences (line 18).

If two configuration options have the same weights, ConfSug-
gester prefers the configuration option affecting more statements
in its thin slice. This heuristic is based on the intuition that config-
uration options affecting more statements seem more likely to be
relevant to the behavioral differences.

3.5 Discussion
We next discuss some design issues in ConfSuggester.

Fixing configuration errors vs. Localizing regression bugs. The
problem addressed in this paper is significantly different than the
traditional regression bug localization problem [71,75]. A regression
bug occurs when developers have made a mistake, which causes the
software to violate its specification after a session of code changes.
By contrast, in our context, the software behavior on the new version
is still as designed by the developers but undesired by the users.

Why not use a dynamic analysis to recommend configuration op-

tions? ConfSuggester uses thin slicing to statically identify respon-
sible configuration options for a behaviorally-deviated predicate.
An alternative is to use a pure dynamic analysis to assess how a
configuration option may affect the control flow. Techniques such as
Delta Debugging [71], value replacement [76], and dual slicing [56]
use a similar idea: they repeatedly replace a variable value with
other alternatives, and then re-execute the program to check whether
the outcome is desired. There are two major challenges that prevent
these dynamic analyses from being used. First, it can be difficult
to find a valid replacement value for a non-Boolean configuration
option, such as a string or regular expression. Second, automati-
cally checking program outcomes requires a testing oracle, which
is often not available in practice, and end-users should not be ex-
pected to provide it. To address these challenges, ConfSuggester
approximates the program behavioral differences by the control flow
differences of two executions, and then statically reasons about the
responsible configuration options.

ConfSuggester’s current limitations. There are three major limi-
tations in the our ConfSuggester technique. First, ConfSuggester
assumes the different behaviors of two program versions are not
caused by non-determinism. For non-deterministic behaviors, Conf-
Suggester could potentially leverage a deterministic replay sys-
tem [23,26] to faithfully reproduce the behaviors. Second, ConfSug-
gester only matches one predicate in the old program version to one
predicate in the new program version. If a predicate evolves into
multiple predicates in the new version, ConfSuggester may output
less useful results. Third, ConfSuggester focuses on identifying
root-cause configuration options that can change the functional be-
haviors of the target program. Configuration options that affect the
underlying OS or runtime system, such as the -Xmx option used to
specify JVM’s heap size when launching a Java program, are not
supported by ConfSuggester.

4. IMPLEMENTATION
ConfSuggester uses the WALA framework [62] to perform offline

bytecode instrumentation. The instrumentation code records the exe-
cution of every statement and the evaluation result of each predicate.
ConfSuggester also uses WALA to analyze Java bytecode statically
to identify the affecting configuration options for each predicate that
behaves differently across versions.
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Program Old Version New Version LOC (new version) ∆LOC #Options

Randoop 1.2.1 1.3.2 18571 1893 57
Weka 3.6.1 3.6.2 275035 1458 14
Synoptic 0.05 0.1 19153 1658 37
JChord 2.0 2.1 26617 3085 79
JMeter 2.8 2.9 91979 3264 55
Javalanche 0.36 0.40 25144 9261 35

Figure 8: All subject programs used in the evaluation. Column

“∆LOC” shows the number of changed lines of code between

the old and new versions. Column “#Options” shows the num-

ber of configuration options supported in the new program ver-

sion.

Like other existing configuration error diagnosis tools [47, 74],
ConfSuggester does not instrument libraries such as the JDK, since
a configuration option set in the client software usually does not
affect the behaviors of its dependent libraries.

5. EVALUATION
We evaluated 4 aspects of ConfSuggester’s effectiveness, answer-

ing the following research questions:

1. How accurate is ConfSuggester in identifying the root-cause
configuration options? That is, what is the rank of the actual
root-cause configuration option in ConfSuggester’s output (Sec-
tion 5.3.1)?

2. How long does it take for ConfSuggester to diagnose a configura-
tion error (Section 5.3.2)?

3. How does ConfSuggester’s effectiveness compare to existing
approaches (Section 5.3.3)?

4. How does ConfSuggester’s effectiveness compare to two variants?
The first variant uses full slicing in identifying suspicious configu-
ration options, and the second variant only uses predicate behavior
changes to recommend configuration options (Section 5.3.4).

5.1 Subject Programs
We evaluated ConfSuggester on 6 Java programs listed in Figure 1.

The first 5 subject programs are the 5 Java programs studied in
Section 2, and the remaining subject program is Javalanche [24],
which is a mutation testing framework.

We included Javalanche because one of its real users provided us
a configuration error he encountered when using Javalanche.

5.1.1 Configuration Errors

For the 5 Java programs studied in Section 2, we manually exam-
ined all deleted and modified configuration options listed in Figure 2.
(The added configuration options are unlikely to cause a miscon-
figuration.) For each change, based on our own understanding, we
wrote a test driver to cover it, and then checked whether the test
driver could reveal different behaviors on two versions. For those
5 programs, we collected 7 errors as listed in Figure 9 (the first 7
errors). For the Javalanche program, we reproduced the reported
configuration error. In Figure 9, errors #3 and #4 can be repro-
duced together in a single execution, and each of the other errors is
reproduced in one execution.

Our methodology of collecting configuration errors is different
from what was used in collecting software regression bugs in the
literature [71, 75]. Software regression bugs often can be found in
well-maintained bug databases. By contrast, finding recorded con-
figuration errors is much harder, mainly because most configuration
errors have not been documented rigorously [69]. Usually, after
a session of code changes, when regression tests pass, developers
may treat the software behaviors as having been validated. Further,

because the software misconfigurations are user-driven, the “fixes”
may be recorded simply as pointers to manuals or other documents.

5.2 Evaluation Procedure
For each subject program, we used ConfSuggester to instrument

both versions. For each configuration error, we used the same
input and configuration to reproduce the different behaviors on two
instrumented versions.

The average size of the execution traces is 40MB, and the largest
one (Randoop’s trace) is 140MB.

When using ConfSuggester to diagnose a configuration error, we
manually specify the initialization statement of each configuration
option as the thin slicing criterion. This manual, one-time-cost
step took 20 minutes on average per subject program. After that,
ConfSuggester works in a fully-automatic way: it analyzes two
program versions and two execution traces, and outputs a ranked list
of configuration options. Future work should automate this manual
step.

Our experiments were run on a 2.67GHz Intel Core PC with
4GB physical memory (2GB was allocated for the JVM), running
Windows 7.

5.3 Results

5.3.1 Accuracy

As shown in Figure 9, ConfSuggester is highly effective in identi-
fying the root-cause configuration options that should be changed
in the new program version. The average rank of the root cause
in ConfSuggester’s output is 1.8. For 6 errors, the root-cause con-
figuration option ranks first in ConfSuggester’s output; for 1 error,
the root-cause configuration option ranks third in ConfSuggester’s
output; and the root-cause option ranks sixth for the remaining error.
ConfSuggester is successful because of its ability to identify the
behaviorally-deviated predicates with substantial impacts through
execution trace comparison. The top-ranked deviated predicates
often provide useful clues about what parts of a program have per-
formed differently.

Summary. ConfSuggester recommends correct configuration op-
tions with high accuracy for evolving configurable software systems
with non-trivial code changes.

5.3.2 Performance of ConfSuggester

We measured ConfSuggester’s performance in two ways: the
performance overhead introduced by instrumentation when demon-
strating the configuration error, and the time cost of recommending
configuration options. Figure 10 shows the results.

The performance overhead to demonstrate the error varies among
programs. The current implementation imposes an average 8×
and 12.8× slowdown in a ConfSuggester-instrumented old and
new program version, respectively. This is due to ConfSuggester’s
inefficient instrumentation code that monitors the execution of every
instruction. The overhead could be reduced by instrumenting at
basic block granularity instead. Even so, except for two errors
(errors #5 and #6) in JChord, all other errors can be reproduced in
less than 30 seconds. Errors #5 and #6 require about 20 minutes to
reproduce.

ConfSuggester spends an average of 3.1 minutes to recommend
configuration options for one error (including the time to compute
thin slices and the time to suggest suspicious options). Computing
thin slices for all configuration options is non-trivial. However, this
step is one-time cost per program and the results can be precom-
puted. The time used for suggesting configuration options is roughly
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Error ID. Error Description Root-Cause #Options Rank of the Root-Cause Configuration Option
Program Configuration Option ConfSuggester ConfDiagnoser [74] ConfAnalyzer [47]

1. Randoop Poor performance in test generation usethreads 57 1 N X
2. Weka A different error message when Weka crashes m numFolds 14 1 9 1
3. Synoptic Initial model not saved dumpInitialGraphDotFile 37 1 N X
4. Synoptic Generated model not saved as JPEG file dumpInitialGraphPngFile 37 6 N X
5. JChord Bytecode parsed incorrectly chord.ssa 79 1 3 X
6. JChord Method names not printed in the console chord.print.methods 79 1 N X
7. JMeter Results saved to a file with a different format output format 55 1 1 X
8. Javalanche No mutants generated project.tests 35 3 4 X

Average 49.1 1.8 15.3 47.5

Figure 9: All configuration errors used in the evaluation and the experimental results. Only the 2nd error is a crashing error, and

all the other errors are non-crashing errors. Column “Root-Cause Configuration Option” shows the actual root-cause configuration

option. Column “#Options” shows the number of configuration options supported in the new program version, taken from Figure 8.

Column “Rank of the Root-Cause Configuration Option” shows the absolute rank of the actual root-cause configuration option in

each technique’s output (lower is better). “X” means the technique is not applicable (i.e., requiring a crashing point), and “N” means

the technique does not identify the actual root cause. When computing the average rank, each “X” or “N” is treated as half of the

number of configuration options, because a user would need to examine on average half of the available options to find the root cause.

Column “ConfSuggester” shows the results of using our technique. Columns “ConfDiagnoser” and “ConfAnalyzer” show the results

of using two existing techniques as described in Section 5.3.3.

Error ID. Run-time Slowdown (×) ConfSuggester time (s)
Program Old Version New Version Slicing Suggestion

1. Randoop 20.1 4.1 90 295
2. Weka 1.6 1.6 80 49
3. Synoptic 1.7 4.7 48 42
4. Synoptic 1.7 4.7 48 42
5. JChord 18.7 44.3 20 38
6. JChord 17.6 41.1 23 29
7. JMeter 1.3 1.4 51 63
8. Javalanche 1.4 1.5 430 265

Average 8.0 12.8 99 91

Figure 10: ConfSuggester’s performance. The “Run-time Slow-

down” column shows the cost of reproducing the error in an

ConfSuggester-instrumented version of the subject program.

The “ConfSuggester time (s)” column shows the time taken by

ConfSuggester to diagnose configuration errors in seconds. Col-

umn “Slicing” is the cost of computing thin slices on both old

and new program versions.

proportional to the size of the execution trace rather than the size of
the subject program.

Summary. ConfSuggester recommends configuration options for
diagnosing configuration errors with reasonable time cost.

5.3.3 Comparison with Two Existing Approaches

This section compares ConfSuggester with two existing approaches,
ConfDiagnoser [74] and ConfAnalyzer [47]. ConfDiagnoser and
ConfAnalyzer are among the most precise configuration error diag-
nosis techniques in the literature.
ConfDiagnoser, proposed in our previous work [74], is an auto-
mated software configuration error diagnosis technique. ConfDi-
agnoser is not cognizant of software evolution, and it diagnoses
configuration errors from a single program version. ConfDiagnoser
assumes the existence of a set of correct execution traces, which are
used to compare against the undesired execution trace to identify
the abnormal program parts. When comparing the undesired execu-
tion trace with a correct execution trace, ConfDiagnoser only uses
a predicate’s deviation value to reason about the most suspicious
options, while ignoring the statements controlled by a predicate’s
evaluation result.

To compare ConfSuggester with ConfDiagnoser, we reused the
pre-built execution trace databases for the 4 shared subject programs
(Randoop, Synoptic, JChord, and Weka) from [74]. Each exist-

ing trace database contains 6–16 correct execution traces. For the
remaining two subject programs (JMeter and Javalanche), we manu-
ally built an execution trace database for each of them by running
correct examples from their user manuals. The databases contain 6
and 8 execution traces for JMeter and Javalanche, respectively.

ConfAnalyzer, proposed by Rabkin and Katz [47], is a lightweight
static configuration error diagnosis technique. ConfAnalyzer tracks
the flow of labeled objects through program control flow and data
flow, and treats a configuration option as a root cause if its value
may flow to a crashing point. Since ConfAnalyzer cannot diagnose
non-crashing errors, we can only apply it to diagnose the crashing
error in Weka (error #2 in Figure 9).

Results. Columns “ConfDiagnoser” and “ConfAnalyzer” in Fig-
ure 9 show the experimental results.

ConfSuggester produces significantly more accurate results than
ConfDiagnoser, primarily for two reasons. First, ConfDiagnoser
focuses on diagnosing erroneous program behaviors and identifies
their responsible configuration options. However, for the problem
addressed in this paper, the new software version that exhibits un-

desired behavior (after applying the same configuration used in the
old version) is working exactly as designed. In other words, the
execution trace obtained by running the new program version is
still correct. Therefore, just comparing execution traces obtained
from the new program version is not effective in identifying the “ab-
normal” behavior. By contrast, ConfSuggester compares execution
traces from two different versions and directly reasons about the
execution differences. Second, ConfDiagnoser only focuses on the
predicate behavior changes, while ignoring the statements poten-
tially impacted by the affected predicate. This makes ConfDiagnoser
fail to distinguish predicates whose behavioral changes can have
different impacts. Section 5.3.4 further evaluates this design choice,
showing that considering the number of controlled statements can
substantially increase the diagnosis accuracy.

ConfAnalyzer outputs the correct result for the crashing error
in Weka, but cannot identify root causes for other non-crashing
errors. The crashing error in Weka occurs soon after the program is
launched. ConfAnalyzer correctly identifies its root cause because a
small number of configuration options are initialized and only one
of them flows to the crashing point.

ConfSuggester is not directly comparable to other related con-
figuration error diagnosis approaches [4, 6, 55, 63, 66, 68]. Existing
approaches target a rather different problem than ConfSuggester,
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Error ID. Rank of the Root-Cause Configuration Option
Program ConfSuggester Full Slicing Predicate Behavior

1. Randoop 1 32 7
2. Weka 1 7 1
3. Synoptic 1 16 3
4. Synoptic 6 17 8
5. JChord 1 19 5
6. JChord 1 30 5
7. JMeter 1 N 1
8. Javalanche 3 N 13

Average 1.8 20.7 5.4

Figure 11: Experimental results of evaluating two design

choices of ConfSuggester. Column “ConfSuggester” shows

ConfSuggester’s results, taken from Figure 9. Column “Full

Slicing” shows the results of replacing thin slicing with full slic-

ing in ConfSuggester. “N” means the technique does not iden-

tify the actual root cause. Column “Predicate Behavior” shows

the results of ConfSuggester, if it only considers predicate be-

havior change. When computing the average rank, each “N” is

treated as half of the number of configuration options.

or require different inputs than ConfSuggester. For example, X-
Ray [4] diagnoses configuration errors on a single program version.
PeerPressure [63] and RangerFixer [68] only support configuration
options defined by certain specific feature models. General soft-
ware fault localization techniques [28, 37] are not well-suited for
configuration error diagnosis, since such techniques often focus on
identifying the buggy code or invalid input values. This has been
empirically validated in our previous work [74].

Summary. Configuration error diagnosis techniques designed for
a single program version achieve less accurate results in diagnos-
ing configuration errors introduced in software evolution. Conf-
Suggester reasons about the behavioral differences between two
program versions, and produces more accurate results.

5.3.4 Evaluating Two Design Choices

This section evaluates two design choices in ConfSuggester.

Slicing algorithms. ConfSuggester uses thin slicing to identify
configuration options whose values may affect a predicate. We
next evaluate a variant that replaces thin slicing with the traditional
full slicing [22]. This variant changes the getAffectingOptions
auxiliary function in Figure 7, by using full slicing to compute all
configuration options that may affect a predicate. Figure 11 (Column
“Full Slicing”) shows the results.

ConfSuggester achieves substantially less accurate results when
using full slicing. The primary reason is that full slicing identi-
fies many irrelevant configuration options that indirectly affect a
predicate of interest. Such configuration options are not pertinent
to the task of error diagnosis. Linking them to the exhibited dif-
ferent behavior would degrade ConfSuggester’s accuracy. Further,
computing full slices is much more expensive than computing thin
slices. WALA’s full slicing algorithm failed to scale to two subject
programs (JMeter and Javalanche).

Predicate behavioral change metrics. ConfSuggester considers
both the predicate behavior change and the number of affected
statements in diagnosing configuration errors. We next evaluate a
variant that only uses the predicate behavior change to diagnose
errors. This variant changes the getExecutedStmtNum auxiliary
function in Figure 7, by making it always return 1. Figure 11
(Column “Predicate Behavior”) shows the results.

ConfSuggester’s accuracy degrades substantially when ranking
predicates based on its behavioral changes without considering
the number of affected statements. The primary reason is that

behaviorally-deviated predicates occur all over the execution traces,
but each predicate may have different impacts to the overall program
behavior change. ConfSuggester uses the number of statements
determined by the predicate evaluation result to approximate such
potential impacts.

Summary. Full slicing includes too many irrelevant program state-
ments due to its conservatism and only using a predicate’s behavior
change is not enough to identify the root-cause configuration op-
tions. ConfSuggester, using thin slicing and considering both the
predicate behavior change and the impacted statements, is a better
choice in diagnosing configuration errors.

5.4 Discussion
Threats to validity. There are several threats to validity of our evalu-
ation. First, the 6 Java programs might not be representative, though
some of them have been used in previous research. Likewise, the
8 configuration errors might not be representative, even though we
evaluated every error we found. We only evaluated ConfSuggester
on errors caused by one configuration option. It is unclear whether
ConfSuggester would produce useful results if fixing a particular
configuration error requires changing values of two dependent con-
figuration options. Second, our evaluation focused on configuration
errors rather than software regression bugs, as all regression tests
between two versions pass. We have not evaluated whether Conf-
Suggester would help users work around buggy program versions.
Third, ConfSuggester’s effectiveness depends on the effectiveness
of the predicate-matching algorithm. In our experiments, on average
12% of lines are changed between the program versions. ConfSug-
gester may yield less useful results for programs with significant
code changes. However, different algorithms can be plugged into
ConfSuggester. Fourth, our evaluation only compared ConfSug-
gester with two other approaches. Comparing with other analyses
or tools might yield different observations.

Experimental conclusions. We have three chief findings. (1) Conf-
Suggester is highly effective in diagnosing configuration errors
introduced by software evolution; (2) ConfSuggester produces more
accurate results than approaches designed to diagnose errors on a
single program version; and (3) ConfSuggester outperforms two
variants that use full slicing and only a predicate’s behavior change
in error diagnosis, respectively.

6. RELATED WORK
The most closely related work falls into three categories: (1) tech-

niques for supporting software evolution; (2) software configuration
error diagnosis techniques; and (3) configuration-aware software
analysis techniques.

6.1 Supporting Software Evolution
As software evolves, its behavior must be validated. Regression

test selection [19] indicates which tests need to be executed for a
changed program. Program differencing techniques [11, 13, 18, 26,
29, 33, 43, 60, 67] identify changes between two program versions
and present the change list to developers for inspection. Change
impact analysis techniques [35], which are often built on top of
program differencing techniques, identify not only the changes, but
also code fragments that are affected by the changes. Different than
ConfSuggester’s predicate-matching algorithm (Section 3.3.1), ex-
isting program differencing techniques primarily focus on matching
program elements at the method level [11, 13, 29, 33, 39, 43, 67, 72],
or matching program statements on the source code based on textual
similarity [21]. By contrast, ConfSuggester’s matching algorithm,
inspired by the JDiff algorithm [3], is specifically designed to match
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the evolved predicate in the new program version. (See Section 3.3.1
for a detailed comparison with JDiff.) The algorithm directly works
on the bytecode of two program versions without any additional
information from users, such as a software revision history [39].

Nagarajan et al. [42] developed a technique to match control flows
of two program versions running with the same input. Different
from ConfSuggester, their work assumes semantically-equivalent
program versions (e.g., optimized and unoptimized), while Conf-
Suggester compares two versions that include functional changes.

Many techniques have been developed to identify failure-inducing
code changes for evolving software [7, 20, 36, 44]. For example,
Delta Debugging aims to find a minimal subset of changes that
still makes the test fail [71]. Test minimization techniques [20, 73]
simplify the failed test to ease comprehension for developers. Conf-
Suggester differs from these techniques in three aspects. First, exist-
ing techniques focus on helping software developers localize a bug,
while ConfSuggester targets software configuration errors fixable
by software end-users. As we have discussed in Section 3.5, con-
figuration errors are fundamentally different than regression bugs.
They are mostly user-driven and do not indicate problems in the
source code. Second, most of the existing techniques identify what

(e.g., a snippet of code) causes the regression bug, but do not answer
the question of how (e.g., which configuration option should a user
change?) to fix the error. By contrast, ConfSuggester explicitly
guides users to suspicious configuration options. Third, most of the
regression failure localization techniques [71] require a testing ora-
cle for automated correctness checking. However, such oracles are
often absent in practice. By contrast, ConfSuggester eliminates this
requirement by approximating the software behavioral difference as
the control flow differences.

6.2 Software Configuration Error Diagnosis
Software configuration errors are time-consuming and frustrat-

ing to diagnose. To reduce the time and human effort needed to
troubleshoot software misconfigurations, prior research has applied
different techniques to the problem of configuration error diagno-
sis [5, 6, 31, 47, 63, 66, 68]. For example, Chronus [66] relies on a
user-provided testing oracle to check the system behavior, and uses
virtual machine checkpoint and binary search to find the point in
time where the program behavior switched from correct to incorrect.
AutoBash [55] fixes a misconfiguration by using OS-level specula-
tive execution to try possible configurations, examine their effects,
and roll them back when necessary. PeerPressure [63] statistically
compares configuration states in the Windows Registry on different
machines. When a registry entry value on a machine exhibiting
erroneous behavior differs from the value usually chosen by other
machines, PeerPressure flags the value as a potential error. More
recently, ConfAid [6] and X-Ray [4] use dynamic taint analysis to
diagnose configuration errors by monitoring causality within the
program binary as it executes. ConfAnalyzer [47] uses dynamic
information flow analysis to precompute possible configuration error
diagnoses for every possible crashing point in a program.

ConfSuggester is significantly different from the existing ap-
proaches. First, ConfSuggester is cognizant of software evolution
while most previous approaches are not [5, 6, 47, 66]. Second, Conf-
Suggester supports diagnosing both crashing and non-crashing er-
rors while most techniques can only diagnose configuration errors
that lead to a crash or assertion failure [5, 6, 47, 66]. Third, un-
like several approaches [6, 66], ConfSuggester does not assume the
existence of a testing oracle. Fourth, ConfSuggester uses platform-
independent offline instrumentation and requires no alternation to
the underlying operating system or runtime environment. This dif-
fers from existing OS-level diagnosis techniques [55, 66]. Fifth,

approaches like PeerPressure [63] and RangeFixer [68] benefit from
the known schema of the Windows Registry and feature models, but
cannot diagnose configuration errors that lie outside these specific
domains. Our technique of analyzing the execution traces is more
general.

6.3 Configuration­Aware Software Analysis
Software configuration management is a central component of

software product lines. Many configuration-aware software analysis
techniques have been developed to analyze configurable software
systems [9, 30, 34, 38], improve software configuration manage-
ment [8, 10, 17, 46, 59], and understand and test the behavior of a
configurable software system [2, 32, 45, 50, 51, 54].

Compared to ConfSuggester, these techniques have rather differ-
ent goals. They primarily focus on reducing the burden of configu-
ration management and preventing certain errors from happening,
or creating test suites to find new errors in a configurable software
system earlier. They cannot diagnose an exhibited configuration er-
ror during software evolution. By contrast, ConfSuggester links the
behavioral differences to a small number of configuration options
and explicitly guides software end-users to the root causes.

7. CONCLUSION AND FUTURE WORK
This paper describes ConfSuggester, a technique to help software

users to troubleshoot configuration errors. ConfSuggester focuses
on errors caused by software evolution, and recommends config-
uration options whose values should be changed to produce the
desired behavior on the new software version. In our experiments,
ConfSuggester accurately identified the root causes of 8 configura-
tion errors in 6 real-world software systems. The source code of
ConfSuggester is publicly available at: http://config-errors.
googlecode.com.

As future work, we plan a user study to evaluate ConfSuggester’s
usefulness to end-users. A challenge will be finding study partici-
pants who are familiar with only the old versions of given subject
programs. We also plan to develop techniques to automatically
distinguish software bugs from configuration errors, when a soft-
ware system exhibits undesired behavior. Such techniques can help
formulate guidance regarding when the user should give up on Conf-
Suggester and assume the error is not related to configuration.
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