
Automated Diagnosis of

Software Configuration Errors

Sai Zhang, Michael D. Ernst

University of Washington

A typical software workflow

2

Software OutputsInputs

Modern software is often configurable

3

Configurable

Software
Outputs

Inputs

Configuration options
�

Possible root causes of wrong output

4

Studied by many existing automated

debugging techniques

This paper!

Bugs

Wrong inputs

Configuration errors

Configurable

Software
Outputs

Inputs

Configuration options
�

Why configuration errors?

• Fixable by changing configuration options

• Actionable by system administrators or end-users

• 17% of the total technical support cost [Kapoor ’03, Yin ’11]

• Configuration options vs. Inputs

– Options: customize program behaviors by altering the control flow

– Input values: produce output for a specific task

5

Outline

• Example

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

6

An example configuration error

• A “bug report” against the Randoop test generation tool

9 Randoop fails to generate tests for NanoXML using the

following command: java randoop.main.Main NanoXML ...

...,but Randoop works perfectly well on its own examples, such as

BinaryTree, TreeMap, etc.

7

Difficulty in diagnosing the Randoop error

• A silent failure

– No crashing points

– No stacktrace

– No error message

• Inputs are already minimized

8

Delta debugging [Zeller’02], dynamic slicing [Zhang’06],

capture/replay [Whitaker’04], stack trace analysis [Rakbin’11],

tainting [Attariyan’12] 9

Root cause of the Randoop configuration error

57 Randoop options in total

…

maxsize = 100

…

...

Sequence seq = createNewSeq();

if (seq.size() > maxsize) {

return null;

}

...

Randoop code:

java randoop.main.Main –-maxsize=1000 NanoXML

9

Resolve the reported ``bug’’:

• A ranked list of suspicious configuration options

• The top-ranked option for the Randoop error:

Suspicious configuration option: maxsize

It affects the behavior of predicate:

“newSequence.size() > GenInputsAbstract.maxsize”

(line 312, class: randoop.ForwardGenerator)

This predicate evaluates to true:

3.3% of the time in normal runs

32.5% of the time in the undesired run

ConfDiagnoser’s diagnosis report

10

Option name

Explanation

Outline

• Example

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

11

Outline

• Example

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

12

Wrong inputs

Bugs

ConfDiagnoser’s assumptions

13

Configuration errors

Configurable

Software
Outputs

Inputs

Configuration options
�

Correct

Execution

Traces

ConfDiagnoser’s assumptions

14

Configuration errors

Configurable

Software
Outputs

Inputs

Configuration options
�

ConfDiagnoser
1.

2.

3. �

Report

Correct

Execution

Traces

ConfDiagnoser’s advantages

• Fully-automatically diagnoses configuration errors

• Diagnoses both crashing and non-crashing errors

• Requires no OS-level support

15

ConfDiagnoser’s insight

• Control flow propagates most configuration options’ effects

• Correct execution traces serve as approximate oracles

– The control flow difference provides debugging clues

//a configuration option

int maxsize = readFromCommandLine();

...

Sequence seq = createNewSeq();

if (seq.size() > maxsize) {

return null;

}

This predicate evaluates to true:

3.3% of the time in correct runs

32.5% of the time in the bad runs

16

The ConfDiagnoser technique

17

--- ---------

Program

affected

predicates

Configuration

Propagation

Analysis

//a configuration option

int maxsize = readFromCommandLine();

Sequence seq = createNewSequence();

...

if (seq.size() > maxsize) {

return null;

}

...
affected predicate

Compute a forward thin slice [Sridharan’07]

Configuration options

The ConfDiagnoser technique

18

--- ---------

Program

affected

predicates

--- ---------

Configuration

Propagation

Analysis

instrument

How often an affected predicate evaluates to true

How often an affected predicate is evaluatedConfiguration options

reproduce

the error

The ConfDiagnoser technique

19

--- ---------

Program

affected

predicates

--- ---------

A bad execution trace

Configuration

Propagation

Analysis

instrument

Compare

&

Select

a set of correct and similar

execution traces

9

1. Convert a trace into a vector

2. Compute the cosine similarity

between 2 vectors

Correct

Execution

Traces

Configuration options

The ConfDiagnoser technique

--- ---------

Program

affected

predicates

--- ---------

A bad execution trace

Configuration

Propagation

Analysis

instrument

reproduce

the error

Correct

Execution

Traces

Compare

&

Select

a set of correct and similar

execution traces

9
Differencing9

correct and similar trace

a bad execution trace

1. Compare each predicate’s behavior between the bad and correct traces .

2. A metric for predicate’s behavior :
1

1
����	����	�
��

+
1

�	�	��
��

Configuration options

The ConfDiagnoser technique

21

--- ---------

Program

affected

predicates

--- ---------

A bad execution trace

Configuration

Propagation

Analysis

instrument

reproduce

the error

Compare

&

Select

a set of correct and similar

execution traces

9
Differencing9

correct and similar trace

a bad execution trace

behaviorally-deviated predicates

1.

2.

3. �

Report
identify affecting configuration options

Correct

Execution

Traces

Configuration options

Outline

• Example

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

22

Research questions

• How effective is ConfDiagnoser in diagnosing errors?

– Diagnosis accuracy

– Time cost

– Comparison with three existing techniques

• One configuration error diagnosis technique

• Two general automated debugging techniques

23

14 configuration errors from 5 subjects

24

Subject LOC #Options #Non-crashing Errors #Crashing Errors

Randoop 18587 57 1

Weka 3810 14 1

Synoptic 19153 37 1

Soot 159271 49 1

JChord 23391 79 1 9

Collected from

[Rabkin ASE’11]
Collected from FAQ,

forum posts, mailing

list questions …

• Correct executions for each program

– 6 – 16 examples from its user manual

• Measure accuracy by the absolute root cause ranking

• Time cost: 4 mins / error (on average)

ConfDiagnoser’s accuracy and efficiency

25

1.

2.

3. �

Average rank: 5th

8 errors ranks first

10 errors ranks in the top 3

crashing errorsnon-crashing errors

Better for non-crashing errors

Root Cause

Rank

Error ID

Comparison with ConfAnalyzer [Rabkin ’11]

• The most recent configuration error diagnosis technique

– Use dynamic tainting

– Only supports crashing errors

26

Average rank

- ConfDiagnoser: 5th

- ConfAnalyzer: 12th

ConfDiagnoser produces:

- Better results on 8 errors

- Same results on 3 errors

- Worse results on 3 errors

crashing errorsnon-crashing errors

Comparison with Tarantula [Jones ’03]

• Tarantula-based configuration debugging

– Use statement coverage to localize suspicious statements

– Use thin slicing to identify the affecting configuration options

27

Tarantula’s statement-level granularity is too fine-grained
• Many statements get the same suspiciousness value

• Statement coverage does not indicate predicate evaluation results

Average rank

- ConfDiagnoser: 5th

- Tarantula: 15th

Comparison with Invariant Analysis [McCamant ’04]

• Invariant Analysis-based configuration debugging

– Use method invariant difference to localize suspicious methods

– Use thin slicing to identify the affecting configuration options

28

Invariant analysis’ method-level granularity is too coarse-grained
• Some control flow changes inside a method are not be reflected by invariants

Average rank

- ConfDiagnoser: 5th

- Invariant Analysis: 18th

Experimental conclusion

• ConfDiagnoser is accurate and efficient

• ConfDiagnoser outperforms existing techniques

– One configuration error diagnosis technique

– Two general automated debugging techniques

29

Outline

• Assumption, Goal, and Insight

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

30

Related work on configuration error diagnosis

• Tainting-based techniques

– Dynamic tainting [Attariyan’08]

– Static tainting [Rabkin’11]

Focuses exclusively on crashing errors

• Search-based techniques

– Delta debugging [Zeller’02], Chronus [Whitaker’04]

Requires a correct state for comparison, or OS-level support

• Domain-specific techniques

– PeerPressure [Wang’04]

– RangeFixer [Xiong’12]

Targets a specific kind of configuration errors, and does not

support a general language like Java

31

Outline

• Assumption, Goal, and Insight

• The ConfDiagnoser Technique

• Evaluation

• Related Work

• Contributions

32

Contributions

• A technique to diagnose configuration errors

Compare relevant predicate behaviors between executions

– Fully automated

– Can diagnose both crashing and non-crashing errors

– Requires no OS-level support

• Experiments that demonstrate its usefulness

– Accurate and fast

– Outperforms three existing techniques

• The ConfDiagnoser tool implementation

http://config-errors.googlecode.com

33

Configuration errors

ConfDiagnoser
1.

2.

3. �

Report

[Backup Slides]

34

Representation of configuration options

inside ConfDiagnoser

• A configuration option is represented as a class field

• An example configuration option in Randoop:
– randoop.main.GenInputsAbsract.maxsize

• Made a 24-LOC syntactic change to 5 subject programs

– Transform configuration option into class field

35

Field name Class name

