
Automated Diagnosis of 

Software Configuration Errors

Sai Zhang, Michael D. Ernst

University of Washington



A typical software workflow
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Modern software is often configurable
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Possible root causes of wrong output
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Why configuration errors?

• Fixable by changing configuration options

• Actionable by system administrators or end-users

• 17% of the total technical support cost [Kapoor ’03, Yin ’11]

• Configuration options vs. Inputs

– Options: customize program behaviors by altering the control flow

– Input values: produce output for a specific task
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Outline
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• Related Work
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An example configuration error

• A “bug report” against the Randoop test generation tool

9 Randoop fails to generate tests for NanoXML using the 

following  command:   java randoop.main.Main NanoXML ...

...,but Randoop works perfectly well on its own examples, such as 

BinaryTree, TreeMap, etc.
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Difficulty in diagnosing the Randoop error

• A silent failure

– No crashing points

– No stacktrace

– No error message

• Inputs are already minimized
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Delta debugging [Zeller’02], dynamic slicing [Zhang’06], 

capture/replay [Whitaker’04],  stack trace analysis [Rakbin’11], 

tainting [Attariyan’12] 9



Root cause of the Randoop configuration error

57 Randoop options in total

…

maxsize = 100

…

...

Sequence seq = createNewSeq(); 

if (seq.size() > maxsize) {

return null;

}

...

Randoop code:

java randoop.main.Main –-maxsize=1000 NanoXML
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Resolve the reported  ``bug’’:



• A ranked list of suspicious configuration options

• The top-ranked option for the Randoop error:

Suspicious configuration option: maxsize

It affects the behavior of predicate:

“newSequence.size() > GenInputsAbstract.maxsize”

(line 312, class: randoop.ForwardGenerator)

This predicate evaluates to true:

3.3% of the time in normal runs

32.5% of the time in the undesired run

ConfDiagnoser’s diagnosis report
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Wrong inputs
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ConfDiagnoser’s assumptions
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ConfDiagnoser’s advantages

• Fully-automatically diagnoses configuration errors

• Diagnoses both crashing and non-crashing errors

• Requires no OS-level support
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ConfDiagnoser’s insight

• Control flow propagates most configuration options’ effects

• Correct execution traces serve as approximate oracles

– The control flow difference provides debugging clues

//a configuration option

int maxsize = readFromCommandLine();  

...

Sequence seq = createNewSeq(); 

if (seq.size() > maxsize) {

return null;

}

This predicate evaluates to true:

3.3% of the time in correct runs

32.5% of the time in the bad runs
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The ConfDiagnoser technique
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int maxsize = readFromCommandLine();

Sequence seq = createNewSequence();

...

if (seq.size() >  maxsize) {

return null;

}

...
affected predicate

Compute a forward thin slice [Sridharan’07]
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The ConfDiagnoser technique
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The ConfDiagnoser technique

-----

--- ---------

-----

------------

Program

affected

predicates

-----

------------

-----

--- ---------

-----

------------

A bad execution trace

Configuration 

Propagation

Analysis

instrument

reproduce 

the error

Correct

Execution

Traces

Compare

& 

Select

a set of  correct and similar

execution traces

9
Differencing9

correct and similar trace
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The ConfDiagnoser technique
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Research questions

• How effective is ConfDiagnoser in diagnosing errors?

– Diagnosis accuracy

– Time cost

– Comparison with three existing techniques

• One configuration error diagnosis technique

• Two general automated debugging techniques
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14 configuration errors from 5 subjects
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Subject LOC #Options #Non-crashing Errors #Crashing Errors

Randoop 18587 57 1

Weka 3810 14 1

Synoptic 19153 37 1

Soot 159271 49 1

JChord 23391 79 1 9

Collected from 

[Rabkin ASE’11]
Collected from FAQ, 

forum posts, mailing

list questions …

• Correct executions for each program

– 6 – 16 examples from its user manual



• Measure accuracy by the absolute root cause ranking

• Time cost: 4 mins / error (on average)

ConfDiagnoser’s accuracy and efficiency
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10 errors ranks in the top 3

crashing errorsnon-crashing errors
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Comparison with ConfAnalyzer [Rabkin ’11]

• The most recent configuration error diagnosis technique

– Use dynamic tainting

– Only supports crashing errors
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Average rank

- ConfDiagnoser:  5th

- ConfAnalyzer: 12th

ConfDiagnoser produces:

- Better results on 8 errors

- Same results on 3 errors

- Worse results on 3 errors

crashing errorsnon-crashing errors



Comparison with Tarantula [Jones ’03]

• Tarantula-based configuration debugging

– Use statement coverage to localize suspicious statements

– Use thin slicing to identify the affecting configuration options
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Tarantula’s statement-level granularity is too fine-grained
• Many statements get the same suspiciousness value

• Statement coverage does not indicate predicate evaluation results

Average rank

- ConfDiagnoser:  5th

- Tarantula: 15th



Comparison with Invariant Analysis [McCamant ’04]

• Invariant Analysis-based configuration debugging

– Use method invariant difference to localize suspicious methods

– Use thin slicing to identify the affecting configuration options
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Invariant analysis’ method-level granularity is too coarse-grained
• Some control flow changes inside a method are not be reflected by invariants

Average rank

- ConfDiagnoser:  5th

- Invariant Analysis: 18th



Experimental conclusion

• ConfDiagnoser is accurate and efficient

• ConfDiagnoser outperforms existing techniques

– One configuration error diagnosis technique

– Two general automated debugging techniques
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Related work on configuration error diagnosis

• Tainting-based techniques

– Dynamic tainting [Attariyan’08]

– Static tainting [Rabkin’11]

Focuses exclusively on crashing errors 

• Search-based techniques

– Delta debugging [Zeller’02], Chronus [Whitaker’04]

Requires a correct state for comparison,  or OS-level support

• Domain-specific techniques

– PeerPressure [Wang’04]

– RangeFixer [Xiong’12]

Targets a specific kind of configuration errors, and does not 

support a general language like Java
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Contributions

• A technique to diagnose configuration errors

Compare relevant predicate behaviors between executions

– Fully automated

– Can diagnose both crashing and non-crashing errors

– Requires no OS-level support

• Experiments that demonstrate its usefulness

– Accurate and fast

– Outperforms three existing techniques

• The ConfDiagnoser tool implementation

http://config-errors.googlecode.com
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Representation of configuration options 

inside ConfDiagnoser

• A configuration option is represented as a class field

• An example configuration option in Randoop:
– randoop.main.GenInputsAbsract.maxsize

• Made a 24-LOC syntactic change to 5 subject programs

– Transform configuration option into class field
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