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Abstract—Type qualifier inference tools usually operate in
batch mode and assume that the program must not be changed
except to add the type qualifiers. In practice, programs must
be changed to make them type-correct, and programmers must
understand them. CASCADE is an interactive type qualifier
inference tool that is easy to implement and universal (i.e., it
can work for any type qualifier system for which a checker is
implemented). It shows that qualifier inference can achieve better
results by involving programmers rather than relying solely on
automation.

I. INTRODUCTION

A type qualifier system, or just qualifier system, augments
an existing type system with type qualifiers to check more
properties. A type qualifier, or just qualifier, is an annotation
that the programmer adds to declarations and uses of types.

Researchers have developed many qualifier systems to check
software properties such as concurrency [17], ownership [20],
[39], immutability [21], [40], safety against null derefer-
ences [8], [33], and security [8], [16], [33], [35], [44]. Java 8
supports the syntactic features required by qualifier systems [2].

The benefits of a qualifier system, such as safety guarantees
and machine-checkable documentation, come at the cost of
adding the qualifiers to code. The burden of annotating code
with qualifiers is a major obstacle to the adoption of qualifier
systems. Realizing the burden of adding qualifiers, researchers
have developed myriad qualifier inference tools [5], [9], [11]–
[13], [18], [20], [21], [21]–[23], [26], [30], [34], [37], [38],
[40]. These tools employ static analysis, dynamic analysis, or
a combination of the two.

Existing qualifier inference tools operate in batch mode. That
is, they take the source code as input, analyze it, and insert
all the qualifiers at once. While batch qualifier inference tools
can add qualifiers to large pieces of code without involving
the programmer, these tools have several weaknesses. First,
they are imprecise, because inferring precise qualifiers requires
knowledge of programmer intent and of the run-time behavior
of the program, e.g., application invariants, aliasing, and
interprocedural control and data flow, for all possible inputs.
Second, they are rigid. That is, they assume that the code
does not have to be changed, while usually programmers have
to refactor the code to a form that the qualifier system can

express [41, ch. 6]1. Third, they are unpredictable, because
they add many qualifiers to the code, and it is difficult for the
programmer to tell why a particular code change was applied.
Fourth, they are specific to a single qualifier checker. While
frameworks such as the Checker Framework [33] reduce the
cost of developing a checker, developing a qualifier inference
tool is still a nontrivial engineering task.

This paper introduces CASCADE, a universal and easy-to-
use tool for inferring type qualifiers. CASCADE takes a type-
checker for a qualifier system as input and uses it to assist the
programmer in inferring the qualifiers.

Type inference and refactoring (changing code without
changing the program’s behavior [32]) are usually thought of
as unrelated concepts. However, we consider qualifier inference
a refactoring, because inserting qualifiers in a program does
not alter the behavior of the program. In addition, qualifier
inference often goes beyond inserting qualifiers and requires
code refactorings. CASCADE was inspired by our work on
compositional refactoring [42]. In the compositional paradigm,
a refactoring tool designer decomposes a refactoring into a set
of primitive changes and automates them. Following the com-
positional paradigm, CASCADE decomposes qualifier inference
into primitive changes. Each primitive change resolves one or
more of the errors reported by the qualifier checker.

Another inspiration for CASCADE is speculative analysis [6],
[28], [29], which is a technique that assists programmers in
decision-making by presenting the consequences of their actions
ahead of time. Speculative analysis improves programmers’
productivity by showing potential future versions of the
program and helping programmers avoid undesirable versions
and unnecessary backtracking.

CASCADE is an interactive tool that assists programmers in
adding qualifiers by guiding them through a tree of changes
and error messages. It repeatedly runs the qualifier checker
on variants of the source code to compute a tree of error
and change nodes. The error nodes correspond to the error
messages that the qualifier checker reports, and the change
nodes correspond to potential code changes that resolve the

1“Type qualifier inference” usually refers to only inserting type qualifiers in
a piece of code. However, programmers often need to make other nontrivial
code changes to use the type qualifiers appropriately. Therefore, we take a
broader point of view. We consider type qualifier inference to encompass any
code change that is required to take full advantage of a type qualifier system.
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error messages. A programmer can expand the tree to explore
the effects of the changes on the errors before applying the
changes. Expanding an error node shows its children, which
are the changes that resolve the error. Expanding a change
node shows its children, which are the new errors that the
change introduces. Figure 1 shows a CASCADE tree.

The compositional aspect of CASCADE is computing the
change to fix each error message. The speculative aspect of
CASCADE is computing (1) the effect of each change on
the error messages reported by the qualifier checker and (2)
the required follow-up changes. An advantage of CASCADE’s
design is that it is easy to implement. This makes it easy to
port CASCADE to different programming environments.

We conducted a lab study with 12 programmers to compare
CASCADE with JULIA. JULIA [37], [38] is the state-of-the-art
static analysis tool for inferring nullness qualifiers. The study
participants finished the task faster with CASCADE and inserted
better qualifiers. The participants also felt more in control with
CASCADE and said that they are more likely to use CASCADE
in the future.

This paper makes the following research contributions:
• It introduces CASCADE, which is the first universal, usable,

and easy-to-implement tool that assists programmers in
inferring type qualifiers. CASCADE is open source and
publicly available [1].

• It compares CASCADE, a programmer-assisted qualifier
inference tool, with JULIA, a state-of-the-art batch qualifier
inference tool, through a user study.

II. TYPE QUALIFIERS

Type qualifiers are light-weight specifications that augment
an existing type system to enable static verification of desired
properties of software.

A qualifier system provides a set of qualifiers and a set of
rules to check the use of the qualifiers. For example, one can
add the qualifier @NonNull to the type of a String variable
s—written in Java as @NonNull String s—to indicate that
the variable s cannot be null. A nullness qualifier checker
would ensure that the annotations are accurate and that only
@NonNull references are dereferenced.

Researchers have proposed frameworks for building qualifier
systems, e.g., CQual [16], Clarity [9], JQual [18], JavaCOP [4],
and the Checker Framework [33]. Qualifier systems have
been developed in these frameworks for checking software
properties such as null safety [8], [33], tainting [8], [33],
format strings [35], [44], internationalization [33], regular
expressions [36], UI threading [17], ownership [20], and
immutability [21], [33], [40], [46].

Despite the advances in formalizing, implementing, and
verifying custom qualifiers, annotation burden remains a major
barrier to their adoption. Annotation burden is the cost of
adding type annotations to an existing piece of code so that
it satisfies the rules of a given qualifier system. To mitigate
the annotation burden, researchers have proposed tools for
inferring the qualifiers of a few qualifier systems. Table I
lists some of the proposed qualifier inference tools, all of

TABLE I: Existing qualifier inference tools.

Type
Qualifier

System

Prog.
Languages Type Qualifier Inference Tools

Nullness Java

JastAddJ Nullness [12]
Nit [22], [23]
SALSA Nullness [26]
Xylem [30]
Julia [37], [38]

C Clarity Nullness [9]
Java, C, Perl,
C#, C++ Daikon Nullness [13]

Immutability Java

JQual Immutability [18]
Javarifier [34] for Javari [40]
Pidasa [5]
ReImInfer [21] for ReIm [21]

Ownership Java Inferring Universe Types [11]
Inferring Ownership [20]

which are fully automatic and operate in batch mode. Each
of the existing qualifier inference tools is imprecise, rigid,
unpredictable, and specific to a single qualifier checker. Based
on our prior studies [42] on compositional and wizard-based
paradigms of refactoring, we hypothesize that the underlying
problem is once again too much automation.

III. THE DESIGN OF CASCADE

We use a combination of two concepts, compositional
refactoring and speculative analysis, to build the first universal
programmer-assisted qualifier inference tool and mitigate the
weaknesses of existing batch tools.

We followed an iterative user-centered process when design-
ing CASCADE, our programmer-assisted inference tool. We
started by creating four different low-fidelity paper prototypes.
Our goal was to explore a wide design space and get early
feedback on them. Based on our design goals and the feedback
that we received, we selected two of the low-fidelity prototypes
and turned them into high-fidelity prototypes. We implemented
the high-fidelity prototypes as functional and interactive Eclipse
plug-ins. Both of these prototypes incorporated the ideas of
compositional refactoring and speculative analysis. The differ-
ences were in the user interaction models. Nine programmers
gave feedback on the prototypes.

The compositional paradigm decomposes a complex refac-
toring into small steps and allows the programmer to compose
them. CASCADE decomposes qualifier inference into small
steps in which each step resolves an error reported by the
qualifier checker. Each step may create new errors, and a step
may resolve multiple errors. The most common step in qualifier
inference is to propagate the qualifier of one expression to
another to resolve an incompatibility between qualifiers, e.g.,
the two sides of an assignment. CASCADE automates only
the qualifier propagation steps. The more difficult steps, such
as refactoring code, are left for the programmer to perform
manually. CASCADE leaves the programmer in control of the
entire inference process, so it is easy for the programmer to



insert manual edits. CASCADE uses the qualifier checker to
find places where there are qualifier incompatibility errors and
develops a plan for fixing each error. However, it does not
guarantee that these plans will work, and the programmer does
not expect them all to work. The programmer will accept a
plan when it seems reasonable, and make manual edits when
it does not.

CASCADE forces the programmer to gradually look at parts
of the code whose qualifiers are being inferred. It might seem
that it would take longer to infer qualifiers this way than with
a batch qualifier inference tool. However, the batch qualifier
inference tools can rarely infer qualifiers perfectly, and it can
take a programmer a long time to figure out why they failed.
When a program needs some changes before it will be type-
correct, CASCADE directs the programmer to the parts of the
code that may need to change, helping the programmer to
discover and make the changes.

CASCADE uses speculative analysis to show the conse-
quences of applying each change and propose a plan for
composing the changes. Speculative analysis can help pro-
grammers in making decisions by showing the consequences
of the decisions in advance. CASCADE makes the programmer
aware of the new error messages that the qualifier checker will
report because of applying a change. In addition, CASCADE
suggests changes for the new errors that may arise, effectively
suggesting a plan for composing multiple changes.

A. The CASCADE user interface

CASCADE uses a tree to show errors and potential future
states of the source code. The CASCADE tree (Figure 1) has
two types of nodes: error message nodes and change nodes. An
error node shows an error message that the qualifier checker
reports. A change node offers the programmer an automated
change to apply. The root of the tree is the set of error messages
that the qualifier checker reports.

CASCADE provides an affordance to browse the tree. The
programmer can click on a triangle icon next to a tree node to
expand or collapse the tree (Figure 1), and CASCADE shows
child nodes indented beneath their parent. Expanding an error
message shows any change that CASCADE proposes to resolve
that error message. For example, if a programmer expands the
first error message shown in Figure 1, the tree will expand
to propose a change described as Change field left to

@Nullable TreeNode. Similarly, expanding a change shows
the new error messages that will appear if the change is applied.

Expanding the CASCADE tree does not change the source
code. Rather, it enables the programmer to explore the future
states of the source code, and see how a sequence of proposed
changes will affect the source code.

A programmer can expand the CASCADE tree deeply. For
instance, consider the error message node highlighted in the
CASCADE tree shown in Figure 1. To resolve this error
message, CASCADE proposes the change Change parameter

r to @Nullable TreeNode. Besides, CASCADE allows the
programmers to expand the proposed change node. Expanding
a change node shows the new error messages that will appear

Fig. 1: A screenshot of the CASCADE tree for the JOlden
TreeAdd project. The tree shows each error (top-level
items), a change that fixes it (preceded by “@” and visible
in the errors that have been expanded), and the errors that
each change will introduce (nested under the fix). The top
two errors have been resolved, so their text is gray.

if the change is applied. In this case, the error message
node that CASCADE shows as a child of the expanded
change involves the expression right = r (Figure 1). With
further expansion of the above error message, CASCADE
proposes the change Change field right to @Nullable

TreeNode to fix the error message.
CASCADE maintains the link between the source code and

the nodes on the tree. If the user single-clicks on an error
message or change, CASCADE will open and highlight the
piece of code related to the selected node.

If the user double-clicks on a change tree node, CASCADE
will apply the change on the code and open the affected code
in the editor. In addition, CASCADE will show the applied
change and the error messages that it resolves as disabled
nodes. CASCADE provides an undo feature. If the user undoes a
change, CASCADE will show the change and the error messages
that the change resolves as enabled nodes.

The programmer is free to apply the proposed changes in
any order and intersperse them with manual edits. However,
applying manual or out-of-order changes may make the
tree inconsistent with the source code, in which case the
programmer can press the refresh icon to recompute the tree.



IV. UNIVERSALITY ASSUMPTIONS

We define a universal qualifier inference tool as a tool that
can infer qualifiers according to the rules of any qualifier
system. Our compositional approach to qualifier inference is
universal under two assumptions:

A1. A qualifier checker for the qualifiers is available.
A2. It is possible to automatically compute the code

changes that would fix some of the problems reported
by the qualifier checker.

The implementation of CASCADE satisfies the above as-
sumptions by requiring the following.

A1.1. The qualifiers are compatible with Java 8.
A1.2. A qualifier checker for the given set of qualifiers is

implemented in the Checker Framework.
A1.3. The Checker Framework Eclipse plug-in is configured

to run the qualifier checker.
A2.1 The qualifier checker reports qualifier incompatibili-

ties, which are caused by mismatches in the actual
and expected qualifiers of expressions.

A2.2 For each qualifier incompatibility, the Checker Frame-
work reports the location (enclosing file, offset, and
length) of the code snippet that causes the problem
as well as the actual and expected qualifiers.

The next section explains how CASCADE achieves univer-
sality under the above assumptions.

V. IMPLEMENTATION

Although we demonstrated CASCADE for inferring the
nullness qualifiers (Figure 1), CASCADE is a universal qualifier
inference tool and supports the inference of all qualifiers that
come with a qualifier checker developed on top of the Checker
Framework. Reusing the qualifier checker makes CASCADE
universal and easier to implement than a typical batch qualifier
inference tool.

We implemented CASCADE as an Eclipse plug-in that
depends on the Checker Framework Eclipse plug-in, which
in turn depends on the Checker Framework. The simplicity
of CASCADE makes it easy to port it to other programming
environments.

A. Getting the Checker Error Messages

CASCADE relies on the error messages that the qualifier
checker reports on the given source code and the variants of
the source code. To get the error message, CASCADE invokes
the qualifier checker through the Checker Framework Eclipse
plug-in. The Checker Framework runs the qualifier checker
and populates the Eclipse problems view with markers that
capture information about the error messages reported by the
qualifier checker. Each marker contains information such as
the error message, the offset and length of the piece of code
that caused the error message, and the expected and actual
qualifiers.

B. Proposing Changes to Resolve the Error Messages

CASCADE proposes changes to resolve the qualifier incom-
patibilities reported by the qualifier checker. If the qualifier of
the right-hand side of an assignment statement is not a subtype
of that of the left-side hand side, the qualifier checker will
report a qualifier incompatibility error. Similarly, the qualifiers
of method parameters and corresponding method arguments
must be compatible. As another example, the qualifiers of
method return expressions and the corresponding method
return types must be compatible. These programming language
constructs that require the qualifiers of two program elements
be compatible are referred to as pseudo-assignments. CASCADE
resolves the qualifier incompatibilities by propagating the
qualifier of the right-hand side of the pseudo-assignment to
that of the left-hand side.

C. Proposing a Change Composition Plan

CASCADE proposes a plan for composing the changes in
the form of a tree. It computes the plan through a speculative
analysis.

Usually, changing a qualifier comes with a cascade effect.
A cascade effect refers to all the qualifier changes required by
a given qualifier change. For instance, if a variable changes to
@Nullable, any method parameter that the variable is passed
to has to change to @Nullable, too. To support these cascade
effects, CASCADE applies the change on a copy of the code
and reruns the qualifier checker in the background to see if the
change causes new qualifier incompatibilities. If new incom-
patibilities occur, CASCADE will propose changes for fixing
them and recursively continue to compute the consequences
of those changes. Figure 2 illustrates the pseudocode of the
speculative analysis.

CASCADE uses the binding information computed by the
Eclipse Java Development Tools (JDT) to reliably apply
changes on variants of the code. Eclipse JDT generates a
binding key for declarations such as method and variable
declarations. The binding key is a string that encodes the path to
the declaration through the AST. By storing the change category,
necessary binding keys, and qualifier change, CASCADE can
reliably apply the change on variants of the code for which
the binding keys are valid. If the code changes drastically, the
binding keys may no longer identify the desired declaration.
In practice, because the changes that CASCADE makes to the
code during its speculative analysis are only qualifier changes,
they preserve the binding keys.

CASCADE neither represents the changes as textual changes
nor AST changes. If it represented the changes as textual
changes, a change computed during the speculative analysis
against a variant of the source code would have been unlikely
to be applicable to the original source code. Similarly, if
CASCADE stored references to the AST nodes that it modified
in a copy of the code, the changes would have not been
applicable to the original source code, because the AST
node objects of the original code and its copy have different
identities.



input : C, a piece of code
R, the root node of the tree to compute

output : a tree of changes and errors for inferring the type qualifiers of
C rooted at R

1 function computeTree(C, R)
// Let P be the set of problems that the type

qualifier checker reports for C.
2 P ← check(C)
3 foreach p ∈ P do
4 pn ← createTreeNode(p) // Create a new tree

node for problem p.
5 makeNodeChildOf(pn, R) // Make pn a child of R.
6 F ← suggestedFixes(p) // Let F be the set of

code changes that fix p.
7 foreach f ∈ F do
8 fn ← createTreeNode(f) // Create a new tree

node for change f.
9 makeNodeChildOf(fn, pn) // Make fn a child

of pn.
10 C′ ← changedCode(C, f) // Let C′ be a copy

of C with code change f.
11 computeTree(C′, fn)

Fig. 2: The speculative analysis that computes the tree of
changes is a recursive computation. The main call makes
C be the original version of the code and R be a tree node
that will be the only invisible node of the tree. The result
will be a tree of changes and errors rooted at R.

D. Presenting the Composition Plan

CASCADE presents its composition plan using the standard
Eclipse tree view to achieve a tight integration with Eclipse.
The programmers can use the tree to locate the pieces of code
that correspond to changes and error messages. The location of
the piece of code corresponding to an error message is often
different in the original code and a variant of the code. Because
CASCADE does not change the original source code, the tree
is expected to be consistent with the original source code that
programmers have access to. CASCADE uses a heuristic to
locate the same piece of code in the original version of the
code. It first locates the piece of code that caused the error
message in the copy of the source code. Then, it expands that
piece of code to include a larger part of the code. Finally,
it searches the same piece of code in the original code and
prefers the match whose offset is closest to the offset of the
piece of code in the copy of the source code.

VI. EVALUATION

We conducted a user study to to provide qualitative and
quantitative insight about the strengths and weaknesses of two
paradigms of inferring type qualifiers: batch and compositional.
In the batch paradigm, the qualifier inference tool takes a piece
of code as input and inserts all the remaining qualifiers in the
code. In the compositional paradigm, the programmer manually
composes multiple refactorings each of which inserts qualifiers
to a narrow piece of code.

In this study, we used two tools: JULIA [37], [38] and
CASCADE, which support qualifier inference in the batch
and compositional paradigms, respectively. JULIA provides
the state-of-the-art static analysis qualifier inference tool for

nullness in the batch paradigm. Its goal is to infer nullness
annotations that the nullness checker of the Checker Framework
accepts. CASCADE is the qualifier inference tool that we
developed based on the concepts of compositional refactoring
and speculative analysis.

A. Research Questions

The goal of the study was to answer the following research
questions for automated qualifier inference tools.

RQ1 How do JULIA and CASCADE compare along the
following dimensions?

RQ1a task completion time
RQ1b quality of results
RQ1c learnability
RQ1d control
RQ1e willingness to use
RQ1f predictability

RQ2 How useful is the speculative analysis of CASCADE?
RQ3 What strategies do programmers employ in inferring

the qualifiers using JULIA and CASCADE?

B. Methodology

To evaluate CASCADE and answer the aforementioned
research questions, we conducted a comparative lab study.
This study sheds light on the advantages and disadvantages of
the batch and compositional paradigms.

1) Recruitment: We recruited 12 participants from the
computer science department of the University of Illinois at
Urbana-Champaign, and we offered a $25 gift card to each
participant.

2) Lab Setup: We set up the lab to study one participant
at a time. We set up a PC with the qualifier inference tools
under study. We stayed outside the lab during the study and
instructed the participants to reach out to us with any questions.

3) Training: We prepared written and multimedia tutorials
to introduce the participants to the nullness qualifier checker,
JULIA, and CASCADE. We have made these artifacts publicly
available [3].

a) Nullness Checker: Given that Java with qualifier
support was released shortly before the study, few programmers
knew about this feature during the time frame of our study.
Thus, we prepared a tutorial based on the manual of the
Checker Framework to familiarize the participants with the
nullness checker. Since it is easy to misuse the annotations
and suppress warnings unnecessarily, the tutorial distinguished
justified and unjustified annotations and encouraged the reader
to use justified annotations. We asked the participants to study
our tutorial about the nullness checker before the study. The
tutorial had a few exercises to make sure that the participants
grasp the key concepts of the nullness checker. The participants
sent us their solutions to the exercises. We reviewed the
solutions and asked the participants to correct their solutions
if necessary.



b) JULIA and CASCADE: During the lab study, the
participants watched video tutorials of JULIA and CASCADE
and had access to written versions of the tutorials. The
maintainers of JULIA made a version of it with a command-line
interface available to us. This version of JULIA can infer the
nullness annotations for a piece of code and output them to a
separate annotation file. We wrote an Ant script to enable the
participants run the nullness checker and JULIA from within
Eclipse. The Ant script can run the nullness checker and report
the problems. It can also run JULIA and automatically insert the
inferred annotations in the code. We informed the participants
that the subject programs were stored in a Git repository. The
participants were allowed to use Git or the history features
of Eclipse to view or revert the changes made by JULIA and
CASCADE.

4) Prequestionnaire: Before starting the task, we asked
the participants to fill out a prequestionnaire to collect their
demographic information.

5) Task Design: We designed the study as a within-subject,
counterbalanced one. In a within-subject study, each participant
evaluates both tools under study. An advantage of a within-
subject design is that it enables the participants to qualitatively
compare the two tools. Another advantage is that it mitigates
the variance in the results due to the difference in the expertise
levels of the participants. A standard disadvantage of the within-
subject design is the carryover effect from the first task to the
second one. Two common carryover effects are the learning
and fatigue effects. Learning refers to the experience that the
participant gains in qualifiers and qualifier inference during
the first task. Fatigue refers to participants getting tired after
finishing the first task. We employed two strategies to mitigate
the carryover effect. First, we used two programs to avoid
the learning effect of annotating the same program twice.
Another benefit of using two programs is that it avoids the
limitation of the results to a single program. Second, we used
a counterbalanced design to balance the order in which the
participants annotated the two programs using the two tools
(JULIA and CASCADE). To achieve a counterbalanced design,
we randomly divided our participants into four groups of the
same size. Then, we had each group use the two qualifier
inference tools on the two programs in a unique order.

We used two programs, Barnes-Hut (BH) and Minimum
Spanning Tree (MST), from the JOlden benchmark suite for
our user study. We had two criteria for the programs under
study. First, it had to be possible to annotate the selected piece
of code in 30–40 minutes. Second, the program should be
representative of real code.

During our pilot studies, we found that that the participants
could not annotate the selected programs within the allotted
time. So, we removed parts of the code and simplified other
parts of it to make it possible to annotate it within the allotted
time. We have made our simplified versions of the BH and MST
programs, which we used during the study, publicly available
as part of the artifacts of the study [3].

We asked the participants to insert the nullness annotations
in each program (BH and MST) using the designated qualifier

inference tool (JULIA and CASCADE). We told the participants
that they are allowed to refactor the code but not change the
behavior of the program. We required the participants to make
sure that their uses of the annotations are well justified. For
example, we asked them to avoid using @SuppressWarnings

annotations and assert statements where they believe they are
inappropriate or not needed. We also asked the participants to
avoid @Nullable annotations where @NonNull is appropriate
and vice versa. Similarly, we asked them to avoid @NonNull

annotations where no annotation is needed. We provided a test
suite along the program and required that the test suite passes
before and after the task. After the participants finished the task,
we asked them to run the tests and verify their annotations.

6) Postquestionnaire: After the participants finished the task,
we asked them to fill out a postquestionnaire that captured
their relative preferences towards the two tools along various
dimensions. The postquestionnaire asked the participants to
rank the two tools along multiple dimensions including ease of
use, transparency, control, and willingness to use. In addition,
it asked the participants to elaborate on the strengths and
weaknesses of each tool.

C. Interview

After filling out the postquestionnaires, we conducted a brief
semi-structured interview with each participant. During the
interview session, we asked questions including the ones listed
below.

• How did each of JULIA and CASCADE affect your
strategies for adding qualifiers?

• How intuitive and useful was the tree of changes and
errors presented by CASCADE? How useful did you find
CASCADE’s suggestions of future errors and changes?

• What are your suggestions for improving JULIA and
CASCADE?

D. Results

1) Participant Demographics: The participants came from
nine different research labs at the computer science department
of the University of Illinois at Urbana-Champaign. One
participant was a post-doc, one was a master’s student, and
the rest were PhD students. The participants worked in a
variety of areas such as high performance computing, natural
language processing, security, mobile computing, compilers,
and computer architecture. The prequestionnaire asked the
participants to rate their familiarities with Java and Eclipse
along a 5-point Likert scale. All participants considered
themselves at least familiar with Java, and 11 considered
themselves at least familiar with Eclipse.

2) Task Completion Time (RQ1a): To compare the efficiency
of programmers with each qualifier inference tool, we measured
the task completion times with each tool. With a Welch’s t test
(t(11) = 2.89, p = 0.01, Cohen’s d = 1.13), we found that the
participants were significantly faster using CASCADE (mean =
28 minutes) than JULIA (mean = 39 minutes).



TABLE II: The distribution of the different annotations
that the participants added to the subject programs
(BH and MST). Rows @SuppressWarnings, assert,
@Nullable, @NonNull report the total number of each
annotation for each program and TQI tool. “Suppressed
Statements” is the number of statements suppressed by the
@SuppressWarnings annotations, which we calculated by
counting the number of semicolons in the suppressed piece
of code. “Unresolved Errors” is the number of problems
that the qualifier checker reported after the participants
finished annotating the programs.

BH MST
JULIA CASCADE JULIA CASCADE

@Nullable 71 61 80 55
@NonNull 2 1 4 9

@Suppress-
Warnings 1 1 6 4

Suppressed
Statements 1 1 6 12
assert 1 7 7 4

Unresolved Errors 0 0 2 0

3) Quality of Results (RQ1b): We computed the distribution
of the annotations that the participants inserted using each
of CASCADE and JULIA as a proxy for the overall quality
of the annotations. Table II shows the total number of each
annotation for each program and qualifier inference tool.
Overall, the participants inserted fewer @Nullable annotations
using CASCADE than JULIA. This indicates that the participants
were able to avoid unnecessary @Nullable annotations by plac-
ing a combination of @SuppressWarnings and @NonNull

annotations and assert statements at appropriate places.
The @SuppressWarnings annotation is used to suppress

a false positive reported by the qualifier checker. The partici-
pants inserted fewer @SuppressWarnings annotations with
CASCADE than JULIA. However, the @SuppressWarnings

annotations that the participants inserted with CASCADE sup-
pressed more statements. The reason was that one participant
chose to annotate a whole method as @SuppressWarnings

while all other @SuppressWarnings annotations suppressed
the checker for a single variable declaration.

Programmers can write assert statements to make the
qualifier checker aware of certain properties. Use of assert
is justified for those properties that hold at run time but
the qualifier checker cannot verify statically. The participants
inserted slightly fewer assert statements with CASCADE than
JULIA.

One participant ran out of time while annotating MST with
JULIA and left two errors of the qualifier checker unresolved.

4) Ease of Learning (RQ1c): Despite the fact that JULIA is a
single push-button tool and CASCADE offers several interactive
features, the participants rated the two tools equally easy to
learn (Table III). For example, P12 said:

I just watched the tutorial once and found them easy to
understand and learn.

5) Control (RQ1d): The results of the postquestionnaire
(Table III) indicate that the participants felt more in control

TABLE III: Number of participants of the lab study
who preferred each qualifier inference tool (the first two
columns) with respect to each quality (rows). The last
column lists the number of participants with no preference.

T = CASCADE or JULIA CASCADE JULIA
no pref-

erence
I found T easy to learn. 3 3 6

I know why T inserted each annotation. 8 0 4
Using T , I have control over the

annotation process. 9 3 0
I am willing to use T in future. 11 1 0

with CASCADE than JULIA. P5 mentioned the following on
the postquestionnaire:

Even though I could normally go back and change things
in JULIA, I had no control over the process (since it was
a batch script)
With CASCADE I could choose whether I wanted to make
each of the changes it suggested.

6) Willingness to Use (RQ1e): According to the postques-
tionnaire results (Table III), the participants are more willing to
use CASCADE than JULIA, assuming that robust and efficient
implementations of both tools are available.

P9 mentioned that she would be willing to use JULIA for
legacy software.

I would use JULIA if I wanted to annotate a project that
is not starting now, so there is a lot of code that needs
to be annotated immediately. The feature of automatically
inserting annotations would be very useful in this case,
provided that the amount of annotations I do not understand
is not excessive.

7) Predictability (RQ1f): A predictable program transfor-
mation tool is one that makes it easy for the programmers to
tell what code changes it made and why. Table III indicates
that the participants knew better with CASCADE than JULIA
why the tool inserted each annotation. Participants reported
that CASCADE made it easier to find the reason (N = 7)
and location (N = 1) of inserted qualifiers. On the other
hand, participants found it difficult to find the reason (N = 6)
and location (N = 1) of the qualifiers that JULIA inserts.
Participants said that JULIA adds many annotations (N = 2)
including unnecessary annotations (N = 2) and does not
explain why it inserts each annotation (N = 3).

For example, P9 said:
For CASCADE, since there were no annotations in the
program, I had to start adding annotations, which was good
for me because I could see why I needed each annotation
and I had control over this procedure. With JULIA, a lot
of annotations were already added, so, I had to change
them. For some reason, this was harder for me because
changing something that is already there is harder. You
need to consider why it was placed at this point without
having the whole program in your head.

As another example, P12 said:
Since I’m not very familiar with the algorithm JULIA uses,
it feels a bit like a black box to me.

8) Speculative Analysis (RQ2): During the interviews, we
asked the participants about the usefulness of the tree that
CASCADE computes through a speculative analysis. Eight



participants indicated that the speculative analysis of CASCADE
is useful. For instance, P8 said:

I really like that. I could see how the warnings propagated
through things more easily as opposed to just running the
checker, which is kinda like oh this doesn’t work, well,
what if I do this, oh there is a new one.

The participants said that CASCADE (i) makes them more
careful (N = 3), (ii) helps them understand and think about
the code structure (N = 2), and (iii) helps them focus on one
problem at a time (N = 1) by showing the consequences of
applying each change.

For example, P4 said:
It [The CASCADE tree] was very good. [...] To some extent,
I got a feel about how deep the effects are, where actually
the source of the error is, where you could follow multiple
paths, either you could fix the source or fix the whole tree.
[...] It made you think more about is the solution it gave
you the right solution or you could change something at
the source of the tree so that it would give you a different
possible fix.

As another example, P3 mentioned:
I looked at the suggestions by CASCADE but also it made
me actually think about the code structure.

9) Strategies (RQ3): We investigated how the participants
used each qualifier inference tool to identify the common
strategies that they employed. By encouraging the good
strategies and discouraging the bad ones, qualifier inference
tools can become more effective.

a) Exploration Order: CASCADE does not impose any
restrictions on the order in which the programmers expand
the tree and apply changes. Four participants first applied the
changes on the shorter paths of the tree. This observation can
guide the automatic ordering of the nodes of the tree.

Two participants did not expand any changes. They only
expanded errors, applied the suggested changes, and recompute
the tree. Effectively, these participants explored the tree in a
breadth-first order. Since these participants did not use the
speculative feature of CASCADE much, they had to frequently
recompute the tree, which was slow. As a result, these two
participants were less satisfied with CASCADE.

b) Change Application Order: Although CASCADE com-
putes the changes from the root to the leaves of the tree, it does
not impose an order for applying the changes. Two participants
applied the changes on a path from the leaf to the root of the
tree, and one participant applied the changes of a path out of
order. The rest applied the changes of a path from the root to
the leaf.

c) Long Paths: Longs paths in the CASCADE tree indicate
deep consequences of a qualifier change. A good strategy
that the participants employed when they encountered long
paths was to examine the path, read the code, and refactor
the code, if possible, to cut the path short. On the other hand,
some participants ran into problems in handling long paths.
Two participants applied the changes on the paths as they
expanded the paths. Rather than first examining the whole path,
they applied the changes prematurely. When these participants
reached the leaves of the tree and noticed the unresolved

errors, this strategy made the participants backtrack some
of the changes they had applied. Similarly, one participant
applied the last few changes on a path without examining them.
Programmers should be more careful in handling the paths that
leave unresolved errors. One way to improve CASCADE is to
make it discourage careless change applications by warning the
programmers about those paths of the tree that leave unresolved
errors and require closer attention.

10) Performance: Participants said that the tree computation
of CASCADE was slow (N = 5) and JULIA was faster (N = 3).

For instance, P7 said:
With CASCADE, one thing that annoyed me was that it’s
kinda slow, because I think it is meant to be interactive.
[...] With JULIA, yes, I’m going to do it in the old “write
code, compile, look at error” cycle. So, it was familiar.
I didn’t expect any better of it. So, it didn’t matter that
it was on the slower side. If CASCADE was faster, I’d
probably be happier using it.

Four said that the manual work required to use CASCADE
may make it unsuitable for large projects. On the other hand,
they complained that the overhead of understanding and fixing
the annotations inserted by JULIA is high (N = 7).

Although CASCADE’s tree computation was slow, the
participants finished the tasks more quickly with it than JULIA
(Section VI-D2).

11) Suggestions for Improvements: Two participants sug-
gested that CASCADE lets the programmer apply all the changes
inside a subtree at once. For instance, P5 said:

[Had the code been more complicated,] I would have liked
the strategy to have been right-click, fix this tree for me
rather than me visiting the entire tree. And, if there is
some point in the leaf this sort of error, then tell me and
I’ll deal with it manually. Basically, kinda what JULIA is
doing but localized on the tree basis. So, I would’ve said
run Julia on that tree kinda thing. [...] This is why I feel
like a combination of the two would have been better.

Two participants expected that applying all the changes
that CASCADE suggests would resolve all the problems. For
instance P6 said:

With CASCADE, when you apply a change, new errors
will come and it was deceiving that you would apply a
change and you’ll get new errors. [...] After I applied all
changes on the tree, I still had errors.

Similarly, P7 said:
With CASCADE, I got a little cocky because it seemed
CASCADE would be very clever. And, so, I just kept
accepting its annotations and suggestions and ended up
annotating myself into a corner, because I ended up in a
case where you had a @Nullable annotation and it was
being dereferenced and wasn’t obvious how to fix it. So, I
had to go back and again look at the code, understand it
myself, and fix things. I think CASCADE was a false sense
of security because of the way it was working.

CASCADE’s change composition plan is meant to be suggestive
as opposed to definitive. While applying all changes on some
paths of the tree leaves no problems behind, some other paths
eventually leave some problems. If the leaf node of a path
is an error message node, applying all the changes on that
path will result in the error message of the leaf node. One



way to discourage the programmer from taking CASCADE’s
suggestions as definitive is to warn the programmer about the
paths in the tree that leave some problems behind.

One participant found the overlaps between the subtrees
of CASCADE confusing. Two participants suggested that
CASCADE organizes the changes according to data structures
instead of the call hierarchy.

Participants suggested that JULIA be made more interactive
(N = 3) and explain what (N = 1) and why (N = 3) it
changes.

One suggested that JULIA avoids making changes that cause
the checker to report errors.

With JULIA, I’ll say that the program should run automat-
ically but not implement all the changes. For example, we
ran JULIA and there was error given by the checker. Let’s
say it does not apply changes to that set of tree where
after compilation it gives you an error. You just ask the
programmer I cannot figure out for this tree. A mix of
CASCADE and JULIA, that’s what I’m talking about.

Qualifier inference tools are bound to be inaccurate. The
results of the study suggest that the qualifier inference tools
should avoid propagating inaccurate qualifiers across the code
base. Such a propagation often causes additional overhead as
the programmers have to understand and revise the propagated
qualifiers. One possible way to improve the existing batch
qualifier inference tools is to report possible sources of
inaccuracies and qualifier checker errors to the programmers
and let the programmers decide how to handle such difficult
cases. This will essentially bring some of the strengths of
CASCADE into batch qualifier inference tools and make them
more iterative.

On the other hand, CASCADE requires the programmers
to confirm the insertion of each qualifier. While these confir-
mations put the programmers in control, they can also make
the inference process tedious. One way to make the inference
process of CASCADE more efficient is to incorporate some
of the analysis that batch qualifier inference tools perform in
CASCADE. Such an analysis can be used to make CASCADE
automatically insert some of the qualifiers that are accurate
and do not cause the qualifier checker to introduce new errors.

VII. LIMITATIONS

The generalizability of the findings is limited by the extent
to which JULIA represents batch qualifier inference tools.
Among the qualifier inference tools that we evaluated, we
believe that JULIA is currently the most mature and accurate
qualifier inference tool for nullness in the batch paradigm.
Similarly, CASCADE is only one of the possible incarnations
of compositional refactoring and speculative analysis.

The time limits on lab studies constrain the choice of
subject programs. Factors that may affect the performance of a
qualifier inference tool include the size of the subject programs,
preexisting qualifiers in the programs, and dependence of the
subject programs on libraries. While one can speculate about
the affect of these factors on the performance of a batch and
compositional qualifier inference tool, more research is required
to evaluate such speculations.

Because of the limited duration of the lab study, the study
compared only two tools. Future research can study other
configurations such as inserting qualifiers without a special
qualifier inference tool and relying on only the qualifier checker
or using a combination of a batch and compositional qualifier
inference tool.

During a lab study, the participants do not commit to long-
term maintenance of the programs. The desired maintainability
of the qualifiers is another factor that may affect the desirability
of a qualifier inference tool. To avoid too much variability in the
subject programs and mitigate unexpected bugs of the qualifier
inference tools in unknown code, we asked the participants
to annotate two programs that we selected from a suite of
benchmark programs.

Qualifiers were a new feature of Java by the time of our
study. Thus, we trained the participants about the qualifiers.
Nonetheless, the level of familiarity with qualifiers may affect
the results of the study. As more programmers learn about
qualifiers, future studies can experiment with those who are
more experienced with qualifiers.

VIII. RELATED WORK

A. Compositional Refactorings

Compositional refactoring [42] was inspired by our studies to
find the common reasons of underusing the existing automated
refactorings [43]. Compositional refactorings mimic the steps
that a programmer takes while performing large refactorings.
Each refactoring is small and its changes are predictable and
understandable. The changes are presented directly to the user
in the code editor. Our field study [43], analysis of refactoring
usage data [42], and survey and lab studies [42] all suggest
that overall programmers prefer the compositional paradigm
over the existing wizard-based paradigm.

B. Speculative Analysis

Speculative analysis assists programmers in making decisions
by precomputing the consequences of the decisions. Although
speculative analysis, also known as speculative execution, is an
old optimization technique used in domains such as computer
architecture and database systems, it has been applied to
software engineering only recently. The goal of the existing
applications of speculative analysis to software engineering
tasks is to improve the productivity of programmers not the
performance of the system. Quick Fix Scout [29] employs
speculative analysis to make better suggestions for resolving
compilation problems. Solstice [28] is a general framework
that uses speculative analysis to turn an offline analysis into a
continuous analysis. Crystal [6] informs programmers ahead
of time about the conflicts, build errors, and test failures
that upcoming Version Control System (VCS) operations will
introduce.

CASCADE differs from existing applications of speculative
analysis in two major ways. First, it brings speculative analysis
to a new domain, namely, qualifier inference. Second, it uses
deep as opposed to shallow speculative analysis. A shallow
speculative analysis reasons about the state of the system only



one step away. However, a deep speculative analysis reasons
about the state of the system several steps away.

C. Type Qualifier Inference
Researchers have developed many qualifier inference tools

(Table I). We discussed the differences between CASCADE
and the existing batch qualifier inference tools through our
comparative lab study (Section VI). In the following, we
discuss two tools that, similar to CASCADE, rely on an
existing checker for inferring annotations. Houdini [14] is
a tool for inferring the annotations required by ESC/Java [15],
a static program checker, and CANAPA [10] is a tool for
inferring nullness annotations for ESC/Java2, a static checker
for the Java Modeling Language [7]. Houdini, CANAPA, and
CASCADE are similar in that they use an existing checker for
inferring annotations. This technique makes these three tools
general. Unlike CASCADE, Houdini and CANAPA are not
compositional, because they insert all the annotations that they
infer at once, a change that tends to be large and unpredictable.
The annotations inferred by Houdini and CANAPA may cause
the checkers to report errors. Houdini generates an HTML
report to help the programmer in finding the cause of each
error. CASCADE assists the programmer to find the root causes
of errors by computing an interactive tree of related changes
and errors. Houdini and CANAPA are not speculative either,
because they do not present the consequences of inserting the
annotations in advance.

D. Type-Error Messages
CASCADE infers individual automated changes from the

error messages that the type-checker reports. Techniques that
improve type-error messages [19], [24], [25], [45] can enable
CASCADE to infer better changes for more type-errors.

IX. FUTURE WORK

A. Appropriate Levels of Automation for Software Engineering
Tasks

Researchers and practitioners invest in automating many
software engineering tasks. Some of these efforts have led
to technologies that programmers have adopted, e.g., IDEs,
Version Control Systems, Continuous Integration Systems.
However, some other automation efforts, such as automated
refactorings, have not been widely adopted [27], [31], [43].
Our prior work shows that a major cause of the low adoption
of refactoring tools is their over-automation [42], [43]. Over-
automation leads to inappropriate feedback and interaction,
which discourages programmers from using the automation.
Do the automation technologies for other software engineering
tasks suffer from over-automation? Asking this question is an
important first step in finding an appropriate level of automation
and interaction model.

This paper advocates lower levels of automation for qualifier
inference. The participants appreciated the compositional and
speculative aspects of CASCADE. Thus, we expect CASCADE
to be more effective than only a type-checker for inferring
qualifiers. Nonetheless, future studies can evaluate even lower
levels of automation for qualifier inference.

B. Type Qualifier Inference

Our participants pointed out that CASCADE’s tree computa-
tion is slow. Given that CASCADE is an interactive tool, it is
important for it to be fast. The goal of the user study was to
assess the user interaction model and not the performance of
CASCADE. After the user study, we made the tree computation
of CASCADE asynchronous so that the programmer can explore
the tree while it is being computed. There are several ways
to optimize the performance of CASCADE in future. First,
disjoint subtrees of CASCADE can be computed in parallel.
Second, the tree can be computed lazily as the programmer
expands the tree. Finally, it is possible to use the copy-on-write
strategy to avoid taking many copies of the whole code for
speculative analysis. Such optimizations may make it possible
to automatically refresh the CASCADE tree to keep it consistent
with the code.

Currently, the speculative analysis of CASCADE is unidirec-
tional. That is, it propagates qualifiers in one direction: right
to left. For instance, if the qualifier checker reports a type
mismatch in an assignment, CASCADE proposes a change
to propagate the qualifier from the right-hand side of the
assignment to its left-hand side. However, the programmer
may sometimes have to propagate qualifiers from right to left,
e.g., when the code is partially annotated or it depends on a
library. Currently, CASCADE requires the programmer to do the
left-to-right propagation manually and then refresh CASCADE
to see the consequences of the propagation. Future research
can extend CASCADE’s speculative analysis to be bidirectional.
Bidirectional speculative analysis shows the programmer a
larger part of the solution space. The challenge is to present
this larger solution space to the programmer concisely and
intuitively.

X. CONCLUSIONS

Compositional refactoring and speculative analysis worked
well together to shape the design of CASCADE. It is likely
that these two concepts be suitable for automating other
software engineering tasks, e.g., debugging and other program
transformations. CASCADE is the first universal type qualifier
inference tool. That is, it takes a type qualifier checker as
input and uses it to assist the programmer infer the qualifiers.
Rather than offering more automation, CASCADE takes the
opposite direction and reduces the level of automation for
inferring type qualifiers. Reducing the level of automation
makes CASCADE easier to implement and more usable than
existing batch type qualifier inference tools. The results of
our comparative lab study show that CASCADE is easy to
learn, gives more control to the programmers, is faster, and
programmers are more willing to use it. A lesson to learn from
this work is that reducing the level of automation can lead
to superior results, especially when programmers can achieve
better results than the automatic approach.
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