Defects4J: A Database of Existing Faults to
Enable Controlled Testing Studies for Java Programs

René Just, Darioush Jalali, and Michael D. Ernst
Computer Science and Engineering
University of Washington
. . Seattle, WA, USA .
{rjust, darioush, mernst}@cs.washington.edu

ABSTRACT

Empirical studies in software testing research may not be
comparable, reproducible, or characteristic of practice. One
reason is that real bugs are too infrequently used in software
testing research. Extracting and reproducing real bugs is
challenging and as a result hand-seeded faults or mutants
are commonly used as a substitute.

This paper presents DefectsdJ, a database and extensible
framework providing real bugs to enable reproducible studies
in software testing research. The initial version of Defects4J
contains 357 real bugs from 5 real-world open source pro-
grams. Each real bug is accompanied by a comprehensive
test suite that can expose (demonstrate) that bug. Defects4J
is extensible and builds on top of each program’s version con-
trol system. Once a program is configured in Defects4J, new
bugs can be added to the database with little or no effort.

Defects4J features a framework to easily access faulty and
fixed program versions and corresponding test suites. This
framework also provides a high-level interface to common
tasks in software testing research, making it easy to con-
duct and reproduce empirical studies. Defects4J is publicly
available at http://defects4j.org.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Testing tools

Keywords

Bug database, real bugs, testing framework

1. INTRODUCTION

Reproducibility of empirical studies in software testing re-
search is challenging due to the lack of widely accepted and
easy-to-use databases of real bugs. A large number of previ-
ously found and fixed bugs are documented in bug tracking
systems of open source projects. Yet, extracting, reproduc-
ing, and isolating those real bugs requires considerable ef-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

ISSTA’14, July 21-25, 2014, San Jose, CA, USA

Copyright 2014 ACM 978-1-4503-2645-2/14/07...$15.00
http://dx.doi.org/10.1145/2610384.2628055

437

fort, and hence real bugs are rarely used in software testing
research. Existing databases or repositories that provide
faulty program versions [2, 4] offer only a very limited quan-
tity of real bugs and as a consequence mutants or hand-
seeded faults are commonly used as a substitute. However,
mutants and hand-seeded faults differ from inadvertently in-
troduced bugs, and thus might not be suitable for evaluating
testing techniques [6].

This paper presents Defects4J, a database and framework
providing 357 real bugs to support software testing research.
The acronym Defects4J reflects its purpose: A database of
existing faults to enable controlled testing studies for Java
programs. In summary, Defects4J makes the following con-
tributions:

e Defects4J implements a new approach for reproducing
and isolating real bugs from version control history. In
this context, isolation means that the bug fix does not
include irrelevant changes such as features or refactor-
ings. Reproducibility is ensured through an accompa-
nying test suite that includes at least one test case that
exposes the bug — that is, the test case succeeds on the
fixed but fails on the faulty program version.

Defects4J enables reproducibility in software testing re-
search by providing a populated database of isolated
real bugs for real-world programs. The initial version
of Defects4J provides 357 real bugs for 5 large open
source programs. We expect the database to grow be-
cause Defects4J is designed to be extensible. Defects4J
builds on top of the projects’ version control systems —
once a program is configured in DefectsdJ, new bugs,
e.g., obtained from newly reported bug fixes, can be
added to the database with little or no effort.

Defects4J provides a database abstraction layer that
eases the use of the bug database. This abstraction
provides a uniform interface for checking out faulty and
fixed program versions. It also provides uniform access
to build and execution targets by abstracting the build
systems of all programs.

Defects4J features a test execution framework that eases
the implementation of tools for experiments in software
testing research. This framework provides several com-
ponents for common tasks in software testing such as
test execution, test generation, and code coverage or
mutation analysis.

Figure 1 visualizes the overall architecture of Defects4J.
Section 2 describes how we populated the bug database and
the subsequent Sections 3, 4, and 5 detail the individual
parts of Defects4J.

Tool for testing research)()(J

(Test execution framework (Section 5) J

Database abstraction (Section 4) J

Bug database (Section 3

)
5 —
BugDB | .| Version
metadata control

Figure 1: The big picture: architecture of Defects4J.

2. REPRODUCING AND ISOLATING BUGS
FROM VERSION CONTROL HISTORY

This section describes the methodology we used to pop-
ulate Defects4J’s bug database. It also sheds light on chal-
lenges to collecting and reproducing real bugs from version
control history and how we addressed those challenges.

The overall goal is to identify real bugs (i.e., bugs fixed
by a developer), and to obtain, for each bug, a faulty (Vi)
and a fixed (Vg) source code version that differ by only the
bug fix. Specifically, each real bug included in DefectsdJ’s
bug database fulfills the following requirements:

e The bug is related to source code
A developer explicitly labeled the commit of Vj, as a
bug fixing commit, and the bug fix applies to the source
code — bug fixes within the build system, configuration
files, documentation, or tests are not included.

e The bug is reproducible
Vi, is accompanied by at least one test that passes on
Viz but fails on Vi, and the bug is reproducible using
the project’s build system and an up-to-date JVM®.

e The bug is isolated
The bug fix (i.e., the diff between Viyy and Vi) does
not include unrelated changes such as features or refac-
torings.

Defects4J includes a toolset that supports automation of
populating the bug database with real bugs from version
control history.

2.1 Identify Real Bugs Fixed by Developers

A fundamental challenge when collecting bugs is deciding
what constitutes a bug, and what does not. During our
analyses of version control and bug tracking systems, we
encountered several types of fixes not related to the source
code, or features, which were classified as a “bug fix” by
developers. Examples of bugs unrelated to the source code
include faulty or incomplete documentation, faulty tests or
test input data, and faulty build system configurations.

In Defects4J, an automated step identifies candidates for
inclusion. A commit is considered a fixed program version
Vi if 1) the commit log references a bug id of the bug track-
ing system or 2) the bug tracking system references a commit
id of the version control system. A commit is not relevant
if it does not include source code changes.

2.2 Reproduce Real Bugs

A committed source code version might fail some of its
own tests. Yet, those failing tests do not necessarily expose

We reproduced all bugs in Defects4J using a Java 7 runtime envi-
ronment and the OpenJDK Java virtual machine (JVM).

438

diff

Vi m
" features & " isolated fia = n

refactorings bug fix

Figure 2: Source code versions Vj,, and Vg, that
differ by only a bug fix. V,,_; and V,, represent the
source code versions of two consecutive revisions in
a project’s version control history.

a bug in the source code. Similarly, the existence of tests
that sporadically fail might lead to non-deterministic results.

In Defects4J, an automated step removes all tests that fail
on Vj, from the test suite before attempting to expose the
bug in Viuy — the majority of program versions were accom-
panied by failing tests. The automated step then executes
the test suite on V4,4, and a bug is considered reproducible
if at least one test case fails on Vjyy due to the fault.

2.3 Isolate Real Bugs

Isolating the bug is crucial to support testing experiments
that rely on Ve and V. Consider, for example, the evalua-
tion of a test generation approach. If the difference between
Viug and Vg, would include features or refactorings, then a
test suite generated for Vi, could fail on Vi, simply because
Viug misses features unrelated to the bug.

‘We manually reviewed the source code diffs of reproducible
bugs to verify that they did not include irrelevant changes
— if necessary, we isolated the bug fix from the source code
diff. Figure 2 visualizes the relationship between Vi, and
Viiz, and the source code versions V,,—; and V,,, which repre-
sent the source code versions of two consecutive revisions in
the project’s version control system. The difference between
Viug and Vi, is the isolated bug fix, which does not contain
unrelated changes.

3. DATABASE OF REAL BUGS

For the initial version of Defects4J, we reproduced and
isolated 357 bugs for 5 open source programs. This section
provides details about those programs and the bug metadata
included in the bug database of Defects4J.

3.1 Artifacts

Table 1 lists all programs and the numbers of correspond-
ing real bugs that are available in Defects4J’s bug database.
This bug database provides the following artifacts and meta-
data for each bug:

e Revisions in project’s version control system
The bug database provides a mapping from bug id to
the revision ids of which Vi, and Vi, were derived. The
mapping to the faulty revision is merely maintained for
reproducibility — Vj,, is obtained by re-introducing the
bug (i.e., applying the patch of the isolated bug to V).

e Patch of isolated bug
The bug database provides the patch that represents
the isolated bug — that is, the diff between Vg, and
Viug. Basic statistics on patch size and a list of modified
classes are also available.

e Tests that expose the bug
The bug database provides a list of individual tests that
expose the bug (a bug might be accompanied by more
than one test that exposes the bug). For each test, the
name, root cause, and stack trace is available.

Table 1: Programs and number of real bugs available
in the initial version of Defects4J.

Program Bugs|KLoc* Test Tests Dev

KLoc* years
JFreeChart 26 96 50 2,205 7
Closure Compiler | 133 90 83 7,927 5
Commons Math 106 85 19 3,602 11
Joda-Time 27 28 53 4,130 11
Commons Lang 65 22 6 2,245 12
Total | 357 | 321 211 20,109

*KLoc for the most recent version, as reported by SLOCCount

3.2 Implementation Details

Defects4J’s bug database does not use a particular version
control system to store faulty and fixed program versions
and accompanying tests. Rather, it references the projects’
version control systems to ensure flexibility and extensibility.
The projects’ version control systems are heterogeneous and
therefore abstracted by the database abstraction layer.

4. DATABASE ABSTRACTION LAYER

Section 3 described the artifacts that Defects4J’s bug
database provides. This section details the database ab-
straction layer to access those artifacts. The purpose of this
abstraction is to provide hassle-free access to faulty (Viug)
and fixed (Vp,) program versions as well as uniform access
to the program’s build systems. Directly accessing the real
bugs, and the faulty and fixed program versions would re-
quire considerable effort due to the heterogeneous version
control and build systems of the programs.

4.1 Provided API

The abstraction layer of the bug database provides the
following components:

Abstraction of version control systems

This component provides a uniform interface for checking
out Vi and Vg, thus enabling the user to access Vjyuy and
Vz of any project in the database without having knowledge
about the underlying version control system of that project.

Abstraction of build systems

This component abstracts the projects’ build systems and
provides uniform access to common build targets such as
the compilation of sources and tests, or the execution of
tests.

4.2 Implementation Details

In order to provide a uniform interface for accessing Viug
and Vjg, Defects4] assigns a unique id to each bug, ab-
stracting over version control specific revision numbering
schemes. Using the bug metadata, the database abstrac-
tion layer maps those unique bug ids to revision ids of the
project’s version control system, and also applies necessary
patches to provide Vi, and Vi,

The open source programs included in Defects4J employ
different build systems, which vary between programs and
even between revisions of the same program. For exam-
ple, over the last 10 years, the build system of the Apache
commons libraries switched from Ant to Maven (and back
again). In addtion, the developers also restructured the

439

source code directories and renamed packages. Due to the
complexity and diversity of the build configurations, cre-
ating a general build file for all revisions and all projects
is not practical. Therefore, Defects4J uses a hierarchy of
build files. Defects4J’s build file at the top of the hierar-
chy provides the uniform interface and the build file of the
checked-out program version always represents the bottom.
Intermediate build files abstract program-specific configura-
tions. Creating such intermediate build files for a specific
program requires manual effort — this is, however, a one-
time effort.

S. TEST EXECUTION FRAMEWORK

Defects4] features a test execution framework that pro-
vides several components to perform common tasks in soft-
ware testing research. The main goal of this framework is
to reduce researchers’ effort of (re-)implementing common
tasks such as test generation, test execution, and code cov-
erage or mutation analysis.

5.1 Provided API

The test execution framework currently provides the fol-
lowing components:

Monitoring test execution

Defects4J provides a component to monitor the execution
of test suites or individual test cases. This component exe-
cutes a set of tests and monitors the class loader. It returns
detailed information about failing tests and also a list of
program and test classes that were loaded during test exe-
cution. This component eases the determination of failing
tests including the root cause and stack trace.

Test Suite Manipulation

Defects4J provides a component to manipulate and merge
test suites — individual tests can be removed or replaced.
A common use case for this component is to automatically
remove all failing tests from a (generated) test suite.

Test Generation

Defects4J provides a component for test generation — tests
can be generated for each faulty or fixed program version.
Defects4J employs EvoSuite [3] as the default back-end for
automated test generation.

Mutation Analysis

Defects4J provides a component for mutation analysis —
mutation analysis can be performed for arbitrary test suites
on each program version. Defects4J uses Major [5, 7] as the
default mutation testing framework.

Code Coverage Analysis

Defects4J provides a component for measuring code cover-
age — code coverage metrics can be determined for arbitrary
test suites on each program version. DefectsdJ supports
Cobertura? and CodeCover® for the code coverage analysis.

5.2 Implementation Details

The test execution framework builds on top of the
database abstraction layer (described in Section 4), provides
utilities, and abstracts the use of external testing tools such
as Cobertura, CodeCover, EvoSuite, or Major. The test
execution framework provides a uniform interface to the ex-
ternal tools and their generated data, and each component
performs all necessary steps such as instrumentation, test
execution, and data analysis.

?http://cobertura.sourceforge.net, *http://codecover.org

6. RELATED WORK

The software-artifact infrastructure repository (SIR) [2]
can be considered the first attempt to provide a database
of real bugs to enable reproducibility in software testing re-
search. SIR currently provides 81 subjects written in Java,
C, C++, and C+#, but most of the faults are hand-seeded or
obtained from mutation. The number of real bugs for Java
subjects is 35 and the median size of those subjects is 120
LOC, ranging between 24 and 8,570. Besides, none of the
program versions that provide real bugs is accompanied by
any tests, and SIR does not provide a uniform build sys-
tem interface. In contrast to SIR, Defects4J provides 357
real bugs for 5 large real-world programs ranging between
22,000 and 96,000 LOC. Moreover, all 5 programs feature
comprehensive test suites and each bug is reproducible with
an exposing test case.

The iBugs project [1] is the closest related work for a
database of real bugs for Java programs. The authors cre-
ated iBugs to provide a benchmark for fault localization
techniques. It contains 223 bugs with an exposing test case.
Bugs are also extracted from version control history but
not isolated. Moreover, the implementation for populating
the iBugs database is not publicly available, and the faulty
versions can only be built with an outdated version of the
JVM. Compared to iBugs, DefectsdJ has a broader scope
of application and the following three advantages. First,
for 5 programs, which differ in size and operation purpose,
Defects4J provides 357 bugs, all accompanied by compre-
hensive test suites of which at least one test case exposes
the bug. Second, Defects4J accounts for the fact that de-
velopers do not always minimize their commits — all bugs
in Defects4J are isolated (i.e., they do not include unrelated
changes such as features or refactorings). Third, Defects4J
provides a comprehensive test execution framework with
several built-in components to support common tasks in
software testing research.

The Siemens benchmark suite [4] is another set of faulty
programs. It consists of 7 C programs, whose sizes vary
between 141 and 512 LOC. However, the authors obtained
faulty program versions by manually seeding faults, which
they described as being very similar to simple mutations.

7. CONCLUSIONS AND FUTURE WORK

This paper presents Defects4J, a database and extensible
framework to enable controlled testing studies for Java pro-
grams. The initial version of Defects4J contains 357 real
bugs for 5 large open source programs, and its comprehen-
sive framework allows an easy integration of those bugs in
various software testing studies. The most important feature
of Defects4], in our view, is extensibility. Since Defects4J
builds on top of the projects’ version control and build sys-
tems, new bugs can be added with little or no effort.

Adding a new program to Defects4J requires a one-time
manual effort for providing a program-specific wrapper build
file but reproducing bugs is an automated step. The inclu-
sion of a new bug into Defects4]J’s database for an already
existing program is automated if the following requirements
are fulfilled:

e The build system configuration does not change.
e The bug fix does not include features and refactorings.

e The fixed program version is accompanied by at least
one test case that exposes the bug in the faulty version.

440

We assume that the build system configuration of a program
does not frequently change. This assumption is supported
by our experience with the 5 programs included in the ini-
tial version of Defects4J — the build system configuration
changed at most 4 times over a development period of 12
years.

Committing minimized bug fixes together with a regres-
sion test that exposes the bug is already considered best
practice for some of the included programs. Yet, DefectsdJ
provides utilities to ease the process of bug isolation for the
cases where a developer commits a bug fix along with unre-
lated changes.

Adding further programs to enable an increase of the num-
ber of bugs in Defects4J is part of our future work. Besides
increasing the number of programs and bugs in Defects4J,
improving the provided bug metadata by adding a classifica-
tion [8] is another area for future work. Defects4J is publicly
available on its website:

http://defects4j.org

8. REFERENCES

[1] V. Dallmeier and T. Zimmermann. Extraction of bug
localization benchmarks from history. In Proceedings of
the International Conference on Automated Software
Engineering (ASE), pages 433-436, 2007.

H. Do, S. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405-435, 2005.

G. Fraser and A. Arcuri. Evosuite: Automatic test
suite generation for object-oriented software. In
Proceedings of the Joint Meeting of the Furopean
Software Engineering Conference and the Symposium
on the Foundations of Software Engineering
(ESEC/FSE), pages 416-419, 2011.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings
of the International Conference on Software
Engineering (ICSE), pages 191-200, 1994.

R. Just. The Major mutation framework: Efficient and
scalable mutation analysis for Java. In Proceedings of
the International Symposium on Software Testing and
Analysis (ISSTA), 2014. To appear.

R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst,

R. Holmes, and G. Fraser. Are mutants a valid
substitute for real faults in software testing? Technical
Report UW-CSE-14-02-02, University of Washington,
2014.

R. Just, G. M. Kapthammer, and F. Schweiggert. Using
non-redundant mutation operators and test suite
prioritization to achieve efficient and scalable mutation
analysis. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages
11-20, 2012.

A. J. Ko and B. A. Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages
& Computing, 16(1):41-84, 2005.

2]

8]

