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ABSTRACT

We present ClearView, a system for automatically patching errors
in deployed software. ClearView works on stripped Windows x86
binaries without any need for source code, debugging information,
or other external information, and without human intervention.

ClearView (1) observes normal executions to learn invariants that
characterize the application’s normal behavior, (2) uses error detec-
tors to monitor the execution to detect failures, (3) identifies viola-
tions of learned invariants that occur during failed executions, (4)
generates candidate repair patches that enforce selected invariants
by changing the state or the flow of control to make the invariant
true, and (5) observes the continued execution of patched applica-
tions to select the most successful patch.

ClearView is designed to correct errors in software with high
availability requirements. Aspects of ClearView that make it par-
ticularly appropriate for this context include its ability to generate
patches without human intervention, to apply and remove patches
in running applications without requiring restarts or otherwise per-
turbing the execution, and to identify and discard ineffective or
damaging patches by evaluating the continued behavior of patched
applications.

In a Red Team exercise, ClearView survived attacks that exploit
security vulnerabilities. A hostile external Red Team developed
ten code-injection exploits and used these exploits to repeatedly at-
tack an application protected by ClearView. ClearView detected
and blocked all of the attacks. For seven of the ten exploits, Clear-
View automatically generated patches that corrected the error, en-
abling the application to survive the attacks and successfully pro-
cess subsequent inputs. The Red Team also attempted to make
ClearView apply an undesirable patch, but ClearView’s patch eval-
uation mechanism enabled ClearView to identify and discard both
ineffective patches and damaging patches.

Categories and Subject Descriptors:

D.2.5 [Testing and Debugging]: Error Handling and Recovery,
Monitors
D.2.7 [Distribution, Maintenance, and Enhancement]: Correc-
tions, Enhancement
K.6.5 [Security and Protection]: Invasive Software

General Terms: Security, Reliability, Design, Performance
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1. INTRODUCTION
We present ClearView, a system for automatically correcting er-

rors in deployed software systems with high availability require-
ments. Previous research has shown how to detect errors, for exam-
ple by monitoring the execution for buffer overruns, illegal control
transfers, or other potentially incorrect behavior [21, 37, 24]. The
standard mitigation strategy is to terminate the application, essen-
tially converting all errors into denial of service. In many impor-
tant scenarios, system availability is a strict requirement. In such
scenarios, it is imperative to eliminate the denial of service: the
application should provide service even in the face of errors.

ClearView can automatically correct previously unknown errors
in commercial off-the-shelf (COTS) software systems. It patches
running applications without requiring restarts or otherwise per-
turbing the execution. It requires no human interaction or inter-
vention. It works on stripped Windows x86 binaries without access
to source code or debugging information.

Figure 1 presents the architecture of ClearView, which has five
components:

• Learning: ClearView observes the application’s behavior dur-
ing normal executions to infer a model that characterizes those
normal executions. The model is a collection of properties, also
called (likely) invariants, over the observed values of registers
and memory locations. Each invariant was always satisfied dur-
ing the observed normal executions. As ClearView observes
more executions, its model becomes more accurate. Our current
ClearView implementation uses an enhanced version of Daikon
[17] as its learning component.

• Monitoring: ClearView classifies each execution as normal or
failed, by using a set of monitors that detect failures. For each
failed execution, the monitor also indicates the location in the
binary where it detected the failure, and the monitor prevents
negative consequences by terminating the application.
ClearView is designed to incorporate arbitrary monitors. Our
current implementation uses two monitors: Heap Guard (which
detects out-of-bounds memory writes) and Determina Memory
Firewall (a commercial implementation of program shepherd-
ing [24] which detects illegal control flow transfers). Our cur-
rent monitors have no false positives in that they never classify
a normal execution as failed. But they are also only designed to
detect a specific class of errors (heap buffer overflows and illegal
control flow transfers). ClearView is not designed to eliminate
all failures, only those that a monitor detects.

• Correlated Invariant Identification: When a monitor first de-
tects a failure, ClearView installs patches that check previously-
learned invariants close to the location of the failure. These
invariant-checking patches are not intended to correct errors or
eliminate the failure. The goal is instead to find a set of corre-

lated invariants that characterize normal and failed executions.



Figure 1: The ClearView Architecture

Specifically, each correlated invariant is always satisfied during
normal executions but violated during failed executions (which
typically occur in response to repeated or replayed attacks).

• Candidate Repair Generation: For each correlated invariant,
ClearView generates a set of candidate repair patches that en-
force the invariant. Some of these patches change the values
of registers and memory locations to reestablish the invariant
whenever it is violated. Others change the flow of control to
enforce observed control flow invariants.
The hypothesis is that some errors violate invariants, that en-
forcing violated invariants can correct the effects of these errors,
and that correcting these effects can change the execution of the
application to eliminate the corresponding failure. The goal is
to find a patch that corrects the execution after the first error
has occurred but before any effects have propagated far enough
to make a failure inevitable. To accomplish this goal, Clear-
View must find and correct errors that occur early enough in the
execution to make the execution salvageable via the invariant
enforcement mechanism.

• Candidate Repair Evaluation: A candidate repair patch might
have no effect, or even a negative effect, on the patched appli-
cation. ClearView therefore evaluates patches by continuously
observing patched applications as they execute. It ranks each
patch based on whether the application fails or crashes when
the patch is in place. At each point in time ClearView attempts
to minimize the likelihood of negative effects by applying the
most highly ranked patch. The fact that patches affect the exe-
cution only when a correlated invariant is violated also tends to
minimize the possibility that they will negatively affect normal
executions.
The application’s maintainers (if they exist) may wish to find
and eliminate the defect in the source code (if it still exists) re-
sponsible for the failure. ClearView supports this activity by
providing information about the failure, specifically the loca-
tion where it detected the failure, the correlated invariants, the
strategy that each candidate repair patch used to enforce the in-
variant, and information about the effectiveness of each patch.
This information may help the maintainers more quickly un-
derstand and eliminate the corresponding defect. In the mean-
time, the automatically generated ClearView patches can enable
the application to survive to provide acceptable service, without
waiting for human reaction.

ClearView is designed around the concept of learning from fail-
ure (and from success, too). This process of learning enables the
quality of ClearView’s patches to improve over time, similarly to a
biological immune system. The first time it detects a failure, Clear-
View learns a failure location in the application. This information
enables ClearView to target subsequent instrumentation and inter-
vention only where it is likely to be effective. The next several
times it encounters the failure, ClearView learns the variables and
data structures that are corrupted and the correlated invariants that

are violated. This information enables ClearView to generate can-
didate repair patches that may correct the error and eliminate the
failure. Then, ClearView applies the patches. As the application
processes subsequent inputs, ClearView evaluates the effectiveness
of each patch. This evaluation enables ClearView to discard inef-
fective or damaging patches while applying successful patches that
are able to eliminate the failure without negatively affecting the ap-
plication.

Terminology: We adopt the following terminology from the
software reliability community. A defect is a mistake in the de-
sign or source code of the application. An error occurs when the
application does something incorrect, such as compute an incorrect
value. In general, a failure is an observable error, such as a vio-
lation of the application’s specification that is visible to a user. In
this paper we divide failures into three varieties. We use the term
failure for errors that are detected by a ClearView monitor; a crash

is any other error that causes the application to terminate; and an
anomaly is any other observable error, i.e., an observable error that
does not cause the application to terminate and is not detected by a
ClearView monitor. A failed execution is an execution that a Clear-
View monitor terminated because it detected an error. A normal

execution is an execution with no failures, crashes, or anomalies.
An exploit is an input to an application that causes the application
to violate its specification. An attack is a presentation of an exploit
to an application. Note that defects and errors are undesirable pri-
marily to the extent that they cause failures, crashes, or anomalies.

1.1 Red Team Evaluation
As part of DARPA’s Application Communities program (www.

darpa.mil/IPTO/programs/ac/ac.asp), DARPA hired Sparta,
Inc. (www.sparta.com) to perform an independent, adversarial Red
Team evaluation of ClearView. The goal was to evaluate Clear-
View’s effectiveness in eliminating security vulnerabilities. Given
the need for fast automated response to attacks that target such vul-
nerabilities, the time lag typically associated with human interven-
tion (it takes 28 days on average for maintainers to develop and dis-
tribute fixes for such errors [47]), and ClearView’s ability to quickly
and automatically generate and evaluate patches without human in-
tervention, we anticipate that ClearView may be especially useful
in this context.

In the Red Team exercise, ClearView protected an application
community, which is a set of computers that all run the same soft-
ware — in this case, the Firefox web browser. The community
cooperates to learn information about attacks, then uses that infor-
mation to provide immunity to all members (including members
with no previous exposure to the attack) after only several have
been attacked. The community also reduces the time required to
obtain an effective patch.

During the Red Team exercise, the Red Team developed ten bi-
nary code injection exploits and used these exploits to repeatedly
attack the community. The results show that:



• Attacks Blocked: ClearView detected and blocked all of the
attacks; the injected code never executed.

• Successful Continued Execution: For seven of the ten exploits,
ClearView automatically generated and applied a patch that cor-
rected the underlying error and enabled the application to exe-
cute successfully even in the face of the corresponding attacks.
For two of the remaining three exploits, changes to the Clear-
View configuration enabled ClearView to automatically gener-
ate similarly successful patches.

• Patch Quality: Some of the candidate repair patches that Clear-
View evaluated either did not eliminate the failure or introduced
new negative effects such as causing the patched application
to crash. ClearView’s patch evaluation mechanism recognized
and discarded such patches, enabling ClearView to find and dis-
tribute patches that eliminated the failure without negative ef-
fects. The Red Team was unable to find a legitimate input that
the final patched version of Firefox processed incorrectly.

• No False Positives: The Red Team was unable to elicit any
false positives. Specifically, the Red Team was unable to cause
ClearView to apply patches in the absence of an attack.

By making it possible to automatically survive otherwise fatal er-
rors and attacks, our techniques may increase the robustness and
availability of our computing infrastructure in a world increasingly
full of errors and security vulnerabilities.

1.2 Contributions
This paper makes the following contributions:

• Learning: It shows how to observe normal executions to auto-
matically learn invariants in stripped Windows x86 binaries with
no access to source code or debugging information.

• Invariants and Patches: It identifies a set of invariants and cor-
responding patches that can automatically detect and correct er-
rors and security vulnerabilities.

• Invariant Selection and Patch Evaluation: It shows how to
automatically respond to a failure by selecting a promising set
of correlated invariants to enforce, then evaluating the corre-
sponding candidate repair patches to find a patch that enables
the application to survive errors and attacks without service in-
terruptions. Because the patch evaluation mechanism continu-
ally evaluates the effectiveness of the patches, it can recognize
and discard ineffective or damaging patches even long after they
were originally applied.

• Application Communities: It shows how communities of ma-
chines can work together as a group to survive errors and at-
tacks. The members of the community share invariant learning
information and benefit from the experience of other members
to obtain full immunity without prior exposure.

• Red Team Evaluation: It presents experimental results from
a hostile Red Team evaluation of ClearView. For seven of the
ten security exploits that the Red Team developed, ClearView’s
patches enabled the application to survive the attacks and con-
tinue on to successfully process subsequent inputs. There were
no false positives — the Red Team was unable to make Clear-
View apply a patch in the absence of an error or attack.

• Natural Resilience: It provides additional evidence that, when
augmented with simple survival techniques that enable contin-
ued execution through errors without termination, large soft-
ware systems are naturally resilient to errors and attacks.1 This
empirically observed resilience suggests that one productive way

1Related examples of such survival techniques include failure-oblivious comput-
ing [35], boundless memory blocks [34], transactional function termination [42, 39],
data structure repair [14, 15] (including repair based on inferred invariants [13]), and
generalizations of these techniques [33, 36].

to achieve robust software systems is to automatically apply sur-
vival techniques that modify the application and/or the execu-
tion environment to enable continued execution in the face of
errors. This approach stands in stark contrast to standard at-
tempts to develop error-free systems on top of existing brittle
programming languages and execution environments. It also
provides additional intriguing evidence that the complexity in-
herently present in many software systems may protect such
systems from any negative effects of the localized perturbations
characteristic of errors after the automatic application of sur-
vival techniques.

• Invariant Inference: It provides additional evidence that dy-
namic invariant inference, even when used with small test suites,
can deliver accurate and effective specifications with a broad
range of important uses.2

2. CLEARVIEW IMPLEMENTATION
This section describes ClearView’s implementation of each com-

ponent of the architecture of Figure 1: learning (Section 2.2), moni-
toring (Section 2.3), correlated invariant identification (Section 2.4),
repair generation (Section 2.5), and repair evaluation (Section 2.6).
ClearView is currently built on the Determina commercial product
suite (Section 2.1).

2.1 Determina Components
The Determina Managed Program Execution Environment uses

DynamoRIO [5] for efficient, transparent, and comprehensive ma-
nipulation of arbitrary binary executables. All code executes out of
a code cache. Before a code block enters the cache for execution,
a plugin can validate and/or transform it. A plugin can also eject
previously-inserted code blocks from the cache. Plugins can use
this functionality to apply and remove patches in running applica-
tions without otherwise perturbing the execution. ClearView uses
this capability to apply and remove patches that enable ClearView
to check and enforce invariants.

Determina Memory Firewall detects all illegal control flow trans-
fers and intervenes to terminate the execution before any injected
code can execute. (The detection and intervention typically take
place only after the attack has corrupted the application state so
badly that the application can no longer execute successfully.) When
an instruction in the code cache attempts to jump to code out-
side of the cache, Memory Firewall performs a validation check
on the control flow transfer [24]. If the transfer passes the check,
the Managed Program Execution Environment links the target code
block into the cache (after applying any desired instrumentation or
patches), then jumps to this target code block to continue execut-
ing from the cache. This implementation of program shepherding
protects client applications from binary code injection attacks [24].

The Determina Management Console can monitor and control a
large set of distributed client machines. It runs on a central server
that stores patches and communicates securely with instantiations
of the Determina Node Manager running on each client. Each Node
Manager interacts with its corresponding Managed Program Ex-
ecution Environment instance to appropriately apply and remove
patches to and from running and newly-launched applications. Sev-
eral ClearView Management Console plugins build on the Manage-
ment Console functionality to coordinate ClearView’s interaction
with client machines so that they appropriately apply and remove
ClearView patches.
2Examples of techniques that use dynamic invariant inference to enhance security or
otherwise improve application behavior include program steering [25], automatic in-
ference and repair of data structure invariants [13], automatic vaccine generation [28],
and automatic inference and checking of kernel data structure invariants [3]. See the
Daikon web page (http://groups.csail.mit.edu/pag/daikon/) for many other
uses of inferred invariants.



2.2 Learning
The learning component performs dynamic invariant detection

[16], or specification mining. That is, it observes normal execu-
tions to infer a model of the normal behavior of the application.
This model consists of a set of invariants that were satisfied in all
observed executions and are statistically likely to be true on future
executions. Each invariant is a logical formula that was always
satisfied at a specific instruction in the application. Because Clear-
View operates on binaries, the variables in the formulas represent
values (specifically, the values of registers and memory locations)
that are meaningful at the level of the compiled binary.

2.2.1 Daikon

ClearView uses Daikon [17] as its learning component. Daikon
is architected as two components: a front end that extracts trace
data from a running application, and an inference engine that pro-
cesses the trace data to infer the invariants. Daikon was originally
developed to learn source-level invariants. We implemented a new
Daikon front end for x86 that instruments the instructions in basic
blocks, as they enter the code cache, to emit the appropriate trace
data when they execute.

For each instruction, the trace data includes the values of all
operands that the instruction reads and all addresses that the in-
struction computes. Consider, for example, mov [ebp+12], eax,
which moves the value in memory location ebp+12 into the regis-
ter eax. This instruction computes one address (ebp+12) and reads
one operand (the value in this address). Every time the instruc-
tion executes, the ClearView instrumentation produces a trace entry
containing this data.

2.2.2 Invariant Variables and Locations

For each instruction, the front end must select the set of variables
that it will supply to the Daikon inference engine. The set of vari-
ables must be large enough to enable the inference of meaningful
invariants whose enforcement can correct our target class of errors.
But, the set must also be small enough to make the inference task
computationally tractable. Finally, the values in the variables must
be defined in all possible executions (and not just the observed ex-
ecutions).

At each instruction, the front end outputs all variables that are
computed by the instruction or by an instruction that predominates
it.3 The front end computes predominators intraprocedurally. At
each instruction, the Daikon inference engine infers only invariants
that involve at least one variable that the target instruction com-
putes [31].

2.2.3 Procedure Control Flow Graphs

To compute predominators, ClearView builds a control flow graph
for each executed procedure. The nodes in the graph are basic
blocks (as determined by the Determina Managed Program Exe-
cution Engine as it executes the application). The edges represent
the flow of control between basic blocks.

The control flow graph construction algorithm uses a novel com-
bined static and dynamic analysis. This analysis eliminates the
need to find procedure entry points statically (a complex task in
a stripped x86 executable). It maintains a database of known con-
trol flow graphs (with one control flow graph for each dynamically
encountered procedure). It finds new procedures by considering
each basic block the first time it executes. If the basic block is not
already in a known control flow graph, the algorithm assumes that
the basic block is the entry point for a new procedure. It then uses

3An instruction i predominates an instruction j if all control flow paths to j must first
go through i. If i predominates j, then whenever the flow of control reaches j, i has
previously executed and all of the values computed in i are valid.

symbolic execution to construct the control flow graph for this new
procedure.

During the symbolic execution, the algorithm ends the proce-
dure at return instructions, and also at indirect jump instructions
for which it cannot compute the jump target. The algorithm may
break a single static procedure up into multiple dynamically dis-
covered procedures. The only potential drawback is that splitting
procedures in this way may reduce the set of values available to
the invariant inference engine at a given instruction, which may, in
turn, reduce the set of invariants that the inference engine can infer
for that instruction.

2.2.4 Additional Properties and Optimizations

ClearView analyzes the control flow graphs to identify duplicate
variables (which denote values in registers or memory locations)
in the same procedure that always have the same value. It then
postprocesses the trace data to remove all duplicates except the one
from the earliest instruction to execute. This optimization reduced
the number of inferred invariants by a factor of two, which reduced
the learning, invariant checking, and repair evaluation time.

Another ClearView postprocessing step analyzes the trace data to
discover invariants involving stack pointer offsets. As a procedure
allocates and deallocates local variables and calls other procedures,
it may change the value of the stack pointer. Stack pointer offset
invariants of the form sp1 = sp2 +c capture the resulting relation-
ships between the stack pointer sp1 at the entry point of the proce-
dure and stack pointers sp2 at various points within the procedure.
ClearView uses this information to adjust the stack pointer appro-
priately for repairs that skip procedure calls or return immediately
from the enclosing procedure (see Section 2.5.1).

We also extended the set of Daikon invariants to include infor-
mation about which variables contain pointer values. Specifically,
if a negative value or a value between 1 and 100,000 ever appears in
a variable, Daikon infers that it is not a pointer. Otherwise, Daikon
infers that it is a pointer. Daikon uses this information to skip the
inference of lower-bound or less-than invariants that involve point-
ers. This optimization reduced the learning, invariant checking, and
repair evaluation time.

2.3 Monitoring
ClearView can incorporate any monitor that can detect a failure

and provide a failure location (the program counter of the instruc-
tion where the monitor detected the failure). The current implemen-
tation uses Determina Memory Firewall to detect illegal control
flow transfer errors. This monitor is always enabled in a running
application. ClearView also adds two new monitoring components:
Heap Guard and Shadow Stack.

Heap Guard: The Heap Guard monitor detects out-of-bounds mem-
ory accesses. It places canary values at the boundaries of allocated
memory blocks and instruments all writes into the heap to check
if the written location contains the canary value. The presence of
the canary value indicates either an out-of-bounds write or a legiti-
mate previous write (by the application) of the canary value within
the bounds of an allocated memory block. When Heap Guard en-
counters a canary value, it therefore searches an allocation map to
determine whether the written address is within the bounds of some
allocated memory block. If so, normal execution continues; if not,
Heap Guard has detected an out-of-bounds write error. By design,
Heap Guard suffers no false positives. It may, however, miss an
out-of-bounds write error if the out-of-bounds write skips over the
canary value at the boundary of the allocated memory block.

Heap Guard is useful in two ways. First, it can detect out-of-
bounds writes that do not cause illegal control flow transfers. In this



way, Heap Guard enables ClearView to detect (and therefore poten-
tially correct) some out-of-bounds write errors that Memory Fire-
wall does not detect. Second, even when an out-of-bounds write
error would cause an illegal control flow transfer, Heap Guard may
detect an earlier error than Memory Firewall would. This earlier de-
tection may enhance ClearView’s ability to find a successful patch.

It is possible to dynamically enable and disable Heap Guard as
the application executes without otherwise perturbing the execu-
tion. ClearView could, for example, use this functionality to run
the application without Heap Guard during normal production ex-
ecution, then turn Heap Guard on when an event (such as a failure)
indicates an elevated risk of an out-of-bounds write error.

Shadow Stack: ClearView can traverse the call stack to find ad-
ditional candidate correlated invariants in callers of the procedure
containing the failure location. Enforcing one of these additional
invariants may be critical in enabling ClearView to correct the error.

ClearView maintains an auxiliary shadow procedure call stack
and uses this Shadow Stack rather than attempting to unwind the
native call stack. There are two reasons for this. First, a vari-
ety of optimizations (such as frame pointer removal and heavily-
optimized caller/callee interactions) can make it difficult to reliably
traverse a native call stack. Second, errors (such as buffer over-
flows) may corrupt the native stack, making it unavailable to Clear-
View when a monitor detects a failure.

The Shadow Stack contains the addresses of the procedures on
the actual stack. Call and return instructions are instrumented to
maintain the Shadow Stack. The instrumentation is largely per-
formed in-line for efficiency and can be enabled and disabled as
the application runs without perturbing the execution.

2.4 Correlated Invariant Identification
Given a failure location, ClearView attempts to identify invari-

ants whose violation is correlated with the failure. These correlated

invariants have two important properties. First, they are always sat-
isfied in normal executions but violated in failed executions. Sec-
ond, they are violated before the failure occurs. If a correlated in-
variant is violated at run time, then re-establishing it may force the
application back into its normal operating envelope, correct the er-
ror, eliminate the failure, and enable the application to continue to
operate successfully.

2.4.1 Candidate Correlated Invariants

ClearView uses the procedure call stack to obtain a set of candi-
date correlated invariants. Specifically, assume that a procedure P

is on the call stack, with the program counter at instruction i, when
a monitor detects a failure. Then any invariant at a predominator of
i in P is in the candidate correlated invariant set.

In addition to the optimization of Section 2.2.2, ClearView fur-
ther restricts the set of candidate correlated invariants. Any unary
invariant, in any basic block of any procedure on the stack, may be
a candidate correlated invariant. But for binary invariants, which
relate the values of two variables, ClearView considers only invari-
ants whose instruction occurs in i’s basic block. This additional
restriction substantially reduces both the invariant-checking over-
head (see Section 2.4.2) and the number of candidate repairs that
ClearView generates and evaluates when a monitor detects a failure
(see Section 2.5). In practice this optimization did not remove any
useful repairs and (by reducing the number of repairs to evaluate)
decreased the amount of time required to find a successful repair.

More generally, ClearView can use virtually any strategy that
identifies a set of candidate correlated invariants that is likely to
produce a successful repair. The three key considerations are 1)
working with the available failure information (in the current im-

plementation this information includes the location of the failure
and, if enabled, the Shadow Stack), 2) making the set large enough
to include an invariant that produces a successful repair, and 3)
limiting the size of the set to make it feasible to efficiently check
the invariants (as described below in Section 2.4.2) and evaluate
the resulting set of candidate repairs (as described below in Sec-
tion 2.6). In particular, if the Shadow Stack is not available, Clear-
View can simply work with invariants associated with instructions
close to the failure location. It is also possible to develop strate-
gies that learn clusters of basic blocks that tend to execute together,
then work with sets of invariants from clusters containing the basic
block where the failure occurred.

2.4.2 Checking Candidate Correlated Invariants

Given a set of candidate correlated invariants, ClearView gener-
ates and deploys a set of patches that check whether each candidate
correlated invariant is satisfied or violated. For an invariant over
a single variable or over two variables at the same instruction, the
patch executes when the program counter reaches the instruction
associated with the variable(s). For an invariant that expresses a re-
lationship between the values of two variables at different instruc-
tions, an auxiliary patch at the first instruction (to execute) stores
the value of the first variable. Then, a patch at the second instruc-
tion reads the stored value and checks the invariant.

Each invariant-checking patch produces an observation every time
it executes. Each observation identifies the invariant and the loca-
tion of the failure that triggered the deployment of the patch. It also
indicates whether the invariant was satisfied or violated. In this way
the patched application produces, for each combination of invariant
and failure location, a sequence of observations.

2.4.3 Identifying Correlated Invariants

When a monitor detects a failure, ClearView uses the sequences
of invariant-checking observations to classify how highly an invari-
ant is correlated with the failure:

• Highly Correlated: Each time a monitor detected the failure,
the invariant was violated the last time it was checked. The
invariant was satisfied all other times it was checked, in both
normal and failed executions.

• Moderately Correlated: Each time a monitor detected the fail-
ure, the invariant was violated the last time it was checked. In
at least one other failed execution, the invariant was also vio-
lated at least one other time it was checked. The invariant was
satisfied in all normal executions.

• Slightly Correlated: At least one of the times a monitor de-
tected the failure, the invariant was violated at least one of the
times it was checked, but the correlation is not high or moderate.

• Not Correlated: The invariant was always satisfied in all failed
executions.

A correlated invariant need not be violated every time it is checked.
For example, the initial parts of a failed execution may exhibit nor-
mal behavior with no errors during which correlated invariants are
satisfied.

If there are highly correlated invariants, the current ClearView
implementation generates candidate repairs (see Section 2.5) for
only those invariants. If there are no highly correlated invariants,
ClearView generates candidate repairs only for moderately corre-
lated invariants (if any exist). It would also be possible to generalize
this approach to have ClearView generate candidate repairs for all
correlated invariants, with the ClearView candidate repair evalua-
tion (see Section 2.6) using the correlated invariant classification to
prioritize the evaluation of the corresponding repairs.



2.5 Candidate Repair Generation
For each correlated invariant, ClearView generates one or more

candidate repairs to evaluate. (There may be multiple ways to en-
force a single invariant.) The patch that implements the repair (1)
checks whether the invariant is violated, and (2) if so, re-establishes
the invariant by changing the flow of control, the values of regis-
ters, and/or the values of memory locations. Patches for invariants
involving only a single variable check and enforce the invariant at
the variable’s instruction. Patches for invariants involving multiple
variables check and enforce the invariant at the latest (to execute)
of the corresponding instructions for the involved variables.

We next describe the three invariants and corresponding repairs
that ClearView used during the Red Team exercise (see Section 4).

2.5.1 One-of invariant

A one-of invariant has the form v ∈ {c1,c2, . . . ,cn}, where the
ci are constants and v is a variable or expression. This property
identifies all of the values that v ever took on at run time. There are
n repairs of the following form, one for each observed value:
if ! (v == c1 || v == c2 || ... || v == cn) then v = ci

If the application uses v as a function pointer (i.e., v is the tar-
get of a call instruction), another repair simply skips the call if the
invariant is violated. The repair replaces call *v with
if (v == c1 || v == c2 || ... || v == cn) then call *v

A third repair returns immediately from the enclosing procedure:
if ! (v == c1 || v == c2 || ... || v == cn) then return

(The actual patch also adjusts the stack pointer to remove the ar-
guments to the call and performs other cleanup.) This repair can
be used for any invariant, but ClearView currently uses it only for
one-of invariants.
Rationale: One-of invariants often characterize the observed tar-
gets of function calls that use function pointers. The use of unini-
tialized memory or incorrect type casts can produce incorrect func-
tion pointers. Many security attacks also exploit vulnerabilities that
enable attackers to create malicious function pointers. Enforcing
the invariant eliminates any illegal control flow transfer, which may,
in turn, enable the application to survive the error or attack.

2.5.2 Lower-bound Invariant

A lower-bound invariant has the form c≤ v, where c is a constant
and v is a variable or expression. One repair has the form:
if ! (c <= v) then v = c

Rationale: One class of defects can cause an array or buffer index
to be negative, which can cause the application to read and/or write
addresses below the start of the array or buffer. A related class of
defects can cause the application to pass a negative number as a
length to a procedure such as memcpy, which treats the number as
a large unsigned integer. The resulting memory copy then writes
beyond the end of the buffer.

Such defects typically result in errors that violate a lower-bound
invariant such as 0 ≤ v. Enforcing the invariant redirects the out-
of-bound index back into the buffer or array, which can prevent
memory corruption and enable the application to survive the error.

2.5.3 Less-than Invariant

A less-than invariant v1 ≤ v2 relates two variables or expres-
sions (by contrast, a lower-bound invariant relates a variable and a
constant). Less-than invariants can be repaired by adjusting either
v2 (as in the lower-bound repair) or v1. One repair is of the form:
if ! (v1 <= v2) then v1 = v2

Rationale: A defect can cause an array or buffer index to exceed
the upper bound of the array or buffer, which can cause the applica-

tion to access addresses above the end of the array or buffer. Such
defects typically cause the application to violate a less-than invari-
ant that captures the requirement that the index must be below the
upper bound of the array or buffer. Enforcing the invariant redi-
rects the out-of-bound index back into the array or buffer, which
can eliminate memory corruption and enable the application to sur-
vive the error.

2.6 Candidate Repair Evaluation
ClearView evaluates each candidate repair to determine which

repair, if any, is the most effective at correcting the error and en-
abling the application to operate normally. ClearView considers the
repair to have failed if the failure still occurs, a new failure occurs,
or the application crashes after repair. ClearView (tentatively) con-
siders the repair to have succeeded if the application has executed
with the repair in place for at least ten seconds without failing or
crashing. If it later fails or crashes, its status is changed.

The repair evaluation is based on relative repair scores. When a
repair succeeds, its score increases. When a repair fails, its score
decreases. Since the goal is to find a repair that always works,
the scoring system is designed to reward repairs that are always

successful. If a repair ever fails, the system continues to search
for a more successful repair. ClearView therefore uses the scoring
formula (s− f ) + b, where s is the number of successes, f is the
number of failures, and b is a positive bonus given to any repair that
has not yet failed. ClearView uses the following criteria to break
ties among repairs with the same score (for instance, all repairs that
have never been tried have score b):
• Lower on the Call Stack: ClearView prefers repairs in proce-

dures lower on the call stack.
• Earlier Repairs First: In a given basic block or procedure,

ClearView prefers repairs from earlier instructions. The goal
is to minimize error propagation by correcting the earliest error.

• Minimize Control Flow Changes: Repairs that change the con-
trol flow (such as returning immediately or skipping a call) are
prioritized after repairs that only affect the state.
A repair may eliminate one failure, only to expose another fail-

ure. In this case, ClearView performs the full process of find-
ing correlated invariants, generating candidate repair patches, and
evaluating the generated patches all over again, starting with the
patched application. ClearView may therefore generate multiple
patches to repair multiple invariants. This actually happened in the
Red Team exercise (see Section 4.4).

3. APPLICATION COMMUNITIES
It is possible to apply our technique successfully whenever re-

peated exposures to an error or attack give ClearView the opportu-
nity to learn how to defend against the error or attack. One appro-
priate deployment environment is an application community — a
group of machines running the same application that work together
to detect and eliminate failures and/or to defend themselves against
attacks.

Such a monoculture is convenient for users because it provides
them with a familiar software environment across all machines,
thereby making their data and expertise portable across the entire
computing infrastructure. It can also decrease the system admin-
istration overhead. However, a monoculture may also be conve-
nient for attackers, who may be able to exploit a single vulnera-
bility throughout the entire community. By configuring ClearView
to protect an application community, we view the software mono-
culture not as a weakness, but as an opportunity to enhance the
effectiveness of the countermeasures that ClearView can deploy to
neutralize attacks. An application community provides the follow-
ing benefits:



• Accurate Learning: The learning component can work with
many different users, datasets, and usage styles, thereby increas-
ing the accuracy of the learned invariants and the quality of the
applied repair patches.

• Amortized Learning Overhead: ClearView can distribute the
learning overhead across the community, with each member in-
curring overhead for only a small part of the application. For
details, see Section 3.1.

• Faster Repair Evaluation: The community can evaluate can-
didate repairs in parallel, reducing the time required to find a
successful repair.

• Protection Without Exposure: After some members of the
community are attacked and ClearView has found a successful
patch, the patch is distributed throughout the community. The
remaining members of the community become immune to the
attack even though they have never been exposed to the attack.
Furthermore, because the patch corrects the error, it can enable
applications to immediately survive other attacks that attempt to
exploit the same vulnerability, again with no previous exposure
to these attacks.

The ClearView implementation contains components on both the
community machines and a central server that coordinates the ac-
tions of the community. On each community machine, an instance
of the Determina Node Manager coordinates the application and
removal of patches to and from applications running on that ma-
chine. It also provides secure communication (via SSL) with the
Determina Management Console running on the central server. The
Management Console coordinates the distribution of patches to the
Node Managers and mediates the communication between the Clear-
View components located on the community machines and the cen-
tral server.

3.1 Amortized Parallel Learning
We extended Daikon to work in parallel across the members of

a community as follows. On each community machine, a local
version of Daikon processes the trace data to compute invariants
that are true on that machine. ClearView periodically uploads the
locally inferred invariants (not the large trace data that the local
Daikon uses to infer the invariants) to the central server, which up-
dates ClearView’s central database of invariants that are true across
all executions on all members of the community.

It is important to discard any invariants from executions with
errors. Our currently implemented system sends complete local in-
variant data after the application exits; for failed executions, the
data are discarded and never sent. It would be possible to apply
more sophisticated strategies, for example sending invariant sum-
maries periodically but delaying the incorporation of newly-learned
invariants for a period of time long enough to make any undesirable
effects of the execution apparent. Only after the period has expired
with no observed undesirable effects would the system use the in-
variants to update the central invariant database.

ClearView can also use sampling to distribute the learning over-
head among the members of the community. We performed exper-
iments in which we selected, for each community machine, some
of the procedures in the application to trace. ClearView instru-
mented only those procedures to generate trace data. The rest of
the application executed without learning (and without any learn-
ing overhead). The fact that it is possible to learn over arbitrary
parts of the application enables a wide range of distributed learning
strategies that trade off the learning overhead at each community
member, the comprehensiveness of the learning coverage, and the
time required to obtain an acceptable set of invariants. One pos-
sible learning strategy would instrument a randomly chosen small

part of every running application, with new invariants continuously
trickling in from all members of the community. This strategy min-
imizes the learning overhead while keeping the invariants up to date
with information from the latest usage patterns.

It would also be possible to stage the learning. The first phase
would record coverage for each input, typically at procedure gran-
ularity. After a failure, the second phase would instrument regions
close to the failure location, then replay inputs that exercise these
instrumented regions. Daikon would then process the generated
trace data to produce a set of candidate correlated invariants. The
advantage of this approach is that it would reduce the learning over-
head and eliminate the need for a large invariant database. The
drawback is that learning only in response to failures would signif-
icantly delay obtaining a successful patch. The current ClearView
implementation does not implement this scheme.

3.2 Application Community Management
We next describe the actions ClearView takes as it manages the

community in response to a failure.
Detection and Failure Notification: A ClearView monitor run-
ning on one of the community machines encounters the failure. The
monitor terminates the application, then uses the underlying Deter-
mina secure communication facilities to notify the central Clear-
View manager of the failure. The notification includes the failure
location and (if available) the call stack at the time of the failure.
Identifying Correlated Invariants: The central ClearView man-
ager responds to the failure notification by using the failure loca-
tion and call stack to access its central invariant database and com-
pute a set of candidate correlated invariants. For each such invari-
ant, it generates a snippet of C code that checks the invariant, then
compiles the C code to obtain a patch that checks the invariant. It
presents the patches to the Determina infrastructure, which pushes
the patches out to all of the members of the community. The lo-
cal Determina Node Managers apply the patches to executing and
newly-launched instances of the application.

As the patches execute, they generate a stream of invariant check
observations that are sent back to the central ClearView manager.
As described in Section 2.4.3, each observation identifies the in-
variant, the failure that caused ClearView to generate the invariant-
checking patch, and an indication of whether the invariant was sat-
isfied or violated.

Eventually, one or more instances of the application may en-
counter the failure again. When the central ClearView manager
receives the failure notifications, it analyzes the invariant check ob-
servations (as described in Section 2.4.3) to compute a set of cor-
related invariants. It then removes the invariant-checking patches
— the Determina Console Manager instructs the Determina Node
Managers to remove the patches from any instances of the appli-
cation on their machines. ClearView currently performs this step
when it receives the second failure notification from a version of the
application with invariant-checking patches in place. It is straight-
forward to implement other policies.

The current ClearView configuration always runs applications
with the Shadow Stack and Heap Guard monitor turned on. It
is straightforward to implement other policies. For example, one
could turn these features on only after encountering the first fail-
ure, then turn them back off again after the community runs the
patched application for a certain period of time without observing
a failure.
Generating and Evaluating Repairs: The central ClearView man-
ager next generates candidate repair patches for all of the correlated
invariants, specifically by generating and compiling a snippet of
C code that implements the invariant check and enforcement (see



Section 2.5). It then evaluates the repairs (see Section 2.6), us-
ing the Determina infrastructure to apply and remove the patches
in running or newly-launched instances of the application. At any
moment, the most successful patch is applied across the entire com-
munity, including instances of the application that have never en-
countered the failure. Ideally, this repair algorithm eventually finds
a successful patch that corrects the error.
Multiple Concurrent Failures: It is possible for the community
to encounter different failures at the same time (the Red Team ex-
ercise explored such a scenario, see Section 4.3.5). Because Clear-
View applies each patches in response to a specific failure (as iden-
tified by the failure location) and all ClearView communications
identify the failure ultimately responsible for the communication,
ClearView can manage the community as it responds to the events
generated in response to multiple different concurrent failures.

4. RED TEAM EXERCISE
As part of DARPA’s Application Communities program (www.

darpa.mil/IPTO/programs/ac/ac.asp), DARPA hired Sparta,
Inc. (www.sparta.com) to perform an independent, adversarial Red
Team evaluation of ClearView. The Red Team consisted of eleven
Sparta engineers. The goal of the Red Team was to discover and
exploit flaws in our approach and in the ClearView implementa-
tion. The other Red Team exercise participants consisted of the
Blue Team (the authors of this paper) and the White Team (a group
of engineers from Mitre, Inc. led by Chris Doh of Mitre). The
White Team determined the rules of engagement and refereed the
exercise. The exercise was held at MIT on February 25–28, 2008.

During this exercise the Red Team used ten distinct exploits to
attack the application protected by ClearView (Firefox 1.0.0). The
Red Team verified that each exploit successfully targeted a security
vulnerability in the unprotected version of Firefox, resulting in ex-
ecution of arbitrary attacker-chosen code. ClearView detected and
blocked all attacks, terminating Firefox before the attacks took ef-
fect. Moreover, ClearView generated successful patches for seven
of the ten attacks.

4.1 Evaluation Goals
The primary purpose of the Red Team exercise was to evaluate

the effectiveness of the ClearView technology in protecting against
binary code injection attacks, i.e., attacks that attempt to subvert
the control flow of the application, typically by causing the appli-
cation to jump to downloaded code, but more generally by causing
the application to take any unauthorized control flow transfer. This
particular class of attacks was chosen because they are common in
practice and can have particularly serious consequences if success-
ful. The Red Team evaluation had several specific goals:

• Surviving Attacks: Can ClearView respond to attacks by find-
ing patches that enable the application to survive the attack and
continue to execute successfully?

• Repair Evaluation: Does ClearView ever generate a patch that
impairs the application? For example, a bad patch might cause
the application to behave incorrectly on legitimate inputs or cre-
ate a new exploitable error.

• False Positives: Do legitimate inputs ever trigger the ClearView
patch generation mechanism?

• Infrastructure Attacks: Can attackers subvert the ClearView
patch generation and distribution mechanism to send out ma-
licious patches? This paper omits the detailed results of this
qualitative evaluation. In summary, the Red Team judged that
the security measures in the Determina commercial product (en-
cryption, authentication, etc.) provide an acceptable level of pro-
tection against this class of attacks.

4.2 Rules of Engagement
The rules of engagement determined the scope of the Red Team

exercise — what kinds of Red Team attacks were in bounds, how
to judge if an attack succeeded or failed, the access that the Red
Team was given to Blue Team information, etc. Together, the Red,
Blue, and White Teams agreed on an application (the unmodified,
stripped x86 binary of Firefox 1.0.0) for the Blue Team to protect.
With this application, the attack vector was web pages — the Red
Team launched all attacks by navigating Firefox to one or more at-
tack HTML, XUL, or GIF files. Firefox 1.0.0 has several properties
that made it appropriate for this exercise:

• Mature Code Base: The Firefox code base was relatively ma-
ture and tested, which made it a reasonable proxy for other ma-
ture applications that ClearView is designed to protect.

• Vulnerabilities: This version of Firefox contained enough vul-
nerabilities to support a thorough evaluation without the need
for the Red Team to find an infeasibly large number of new vul-
nerabilities.

• Source Code Availability: Source code was available for this
application. Although ClearView does not require (or even use)
any source information, the availability of source code made it
much easier to understand the behavior of the application and
interpret the phenomena observed during the Red Team exer-
cise.

• Automation: Firefox supported the automated loading of web
pages, which facilitated automated learning and testing both in
preparation for and during the Red Team exercise.

Given the envisioned scope of the Red Team exercise and the avail-
able resources, it was not feasible to add more applications to the
Red Team exercise.

4.2.1 Attack Scope

The Red Team attacks fall into three categories: control flow
attacks, induced autoimmune attacks, and false positive attacks.

A control flow attack attempts to subvert the flow of control
within the application. Such an attack was judged to succeed if
it prevented the application from continuing to successfully pro-
cess additional inputs, either by successfully redirecting the flow of
control to malicious code or by causing the application to crash.

A false positive attack present a non-malicious input to the ap-
plication. The attack succeeds when it causes ClearView to apply a
patch in response to loading a legitimate web page.

An induced autoimmune attack attempts to turn the ClearView
patch mechanism against the application. Such an attack succeeds
if ClearView’s patch affects the behavior of the application on legit-
imate inputs (as opposed to attack inputs). An autoimmune attack
was judged to succeed if the patched version of Firefox, when made
to navigate to a sequence of legitimate web pages, did not behave
the same as the unpatched version (bit-identical displays, same user
functionality).

Insider attacks, where some nodes start out malicious and can
send misleading data about application behavior, were not part of
the threat model for this exercise.

Within these constraints, the Red Team was given completely
free rein in generating attacks. Known attacks, variants on known
attacks, completely new attacks, and attacks that involved multiple
web pages loaded in sequence were all within scope. There were
no restrictions whatsoever placed on the information that the Red
Team was allowed to use when generating attacks.

4.2.2 Red Team Exercise Preparation

Prior to the Red Team exercise, the Blue Team generated an in-
variant database by running Firefox on a collection of twelve web



pages that exercise functionality related to known Firefox vulnera-
bilities. Learning was confined to selected regions of the applica-
tion related to these vulnerabilities. The web pages and invariant
database were both made available to the Red Team before the Red
Team exercise.

Several months before the Red Team exercise, the Blue Team
provided the Red Team with all of the Blue Team’s source code,
tests, and documentation, including design documents, presenta-
tions to sponsors, and the Blue Team’s own analyses of weaknesses
in ClearView. During the period of time leading up to the Red Team
exercise, the Blue Team periodically provided the Red Team with
source code, test, and documentation updates. At the time of the
Red Team exercise, the Red Team had complete access to all of the
source code, tests, and documentation for the running Blue Team
system.

Prior to the Red Team exercise, the Red Team selected 57 eval-
uation web pages. These legitimate web pages exercise a range of
Firefox functionality and were used during the Red Team exercise
for repair evaluation (specifically, to determine if the patched ver-
sion of Firefox displayed the evaluation pages correctly) and false
positive evaluation (specifically, to determine if any of the evalua-
tion pages triggered the ClearView patch generation mechanism).
The Blue Team was not provided with these web pages prior to the
Red Team exercise.

For the Red Team exercise, the Blue Team provisioned a small
community of machines with Firefox deployed on all machines.
The Blue Team configured ClearView with Memory Firewall, Heap
Guard, and the Shadow Stack enabled from the start on all Firefox
executions.4 The Red Team attacked this community during the
Red Team exercise.

4.3 Attack Evaluation
The first phase of the Red Team exercise evaluated ClearView’s

ability to protect Firefox against Red Team attacks. The Red Team
selected ten defects in Firefox, then created one or more exploits
for each defect. The targeted defects cause exploitable errors such
as unchecked JavaScript types, out-of-bounds array accesses, heap
and stack buffer overflows, and JavaScript garbage collection prob-
lems. All of the exploits were verified to work — each successfully
exploited a vulnerability in Firefox. The Red Team used the ex-
ploits to perform the following attacks.

4.3.1 Single Variant Attacks

For each defect, the Red Team chose an exploit, then repeatedly
presented the exploit to an instance of Firefox running in the com-
munity. The Red Team presented each attack only after ClearView
had performed all actions taken in response to the previous attack.
For all 10 exploits, ClearView monitors detected and blocked the
corresponding attacks. For 7 of the exploits, ClearView generated
patches that enabled Firefox to continue to execute through the at-
tacks to correctly display the subsequently loaded evaluation pages.
The Red Team observed no differences between the patched and
unpatched versions of Firefox. Subsequent investigation after the
Red Team exercise (see Section 4.3.2) indicated that small configu-
ration changes enabled ClearView to successfully generate patches
for two of the remaining three exploits.

Table 1 presents the number of exploit presentations required for
ClearView to find and apply the patch that enabled Firefox to exe-
cute successfully through the attack. In general, the minimum num-
ber of exploit presentations is four. The first presentation makes

4With one exception. Specifically, the presence of Heap Guard disabled the exploit for
the defect with Bugzilla number 296134. To enable the meaningful inclusion of this
exploit in the Red Team exercise, the Blue Team turned off Heap Guard when the Red
Team deployed this exploit.

Bugzilla Number Presentations Error Type
269095 6 Memory Management
285595* 4 Heap Buffer Overflow
290162 4 Unchecked JavaScript Type
295854 5 Unchecked JavaScript Type
296134 4 Stack Overflow
311710 12 Out-of-Bounds Array Access
312278 4 Memory Management
320182 6 Memory Management
325403* 4 Heap Buffer Overflow

Table 1: Number of times each exploit was presented before

ClearView created and applied a patch that protected against

the exploit. A * identifies the two exploits for which ClearView

did not successfully generate a patch during the Red Team ex-

ercise, but did successfully generate a patch in subsequent ex-

periments after reconfiguration.

ClearView aware of the exploit; ClearView responds by comput-
ing a set of candidate correlated invariants and applying patches
that check candidate invariants (see Sections 2.4.1 and 2.4.2). Dur-
ing the next two presentations ClearView records invariant satis-
faction and violation information to compute the set of correlated
invariants (see Section 2.4.3). After these presentations ClearView
removes the invariant-checking patches and generates and applies
patches that enforce correlated invariants (see Sections 2.5 and 2.6).
If the first invariant enforcement patch is successful, ClearView has
corrected the error in four presentations.

As Table 1 indicates, the first invariant enforcement patch suc-
cessfully corrected the errors from exploits 290162, 296134, 312278,
285595, and 325403. For exploit 295854 the first patch did not cor-
rect the error, but the second patch did. For exploits 269095 and
320182 the third patch was the first successful patch.

Exploit 311710 is an outlier in that it involves three separate de-
fects, each of which is exploited by the same attack. ClearView cor-
rects the error from the first defect after four presentations, at which
point the attack exploits the second defect. It takes ClearView an-
other four presentations to correct the error from this second defect,
at which point the attack exploits the third defect. It takes Clear-
View another four presentations to correct the error from this final
defect, for a total of twelve presentations to obtain a set of patches
that enables Firefox to successfully survive the attack.

We next discuss the different exploits (we group the discussion
by type) and the ClearView response to each exploit.
Stack Overflow: Exploit 296134 causes Firefox to incorrectly com-
pute a negative value for the length of a string. This negative length
is then passed to memcpy, which treats it as a very large unsigned
integer. The resulting copy writes downloaded data over exception
handlers on the stack. When the copy proceeds past the end of the
stack, the invoked overwritten exception handler executes down-
loaded code.

During learning ClearView learned a lower-bound invariant that
requires the computed string length to be at least one. ClearView
generated a patch that enforced this invariant by setting the length
to one. This patch corrected the out-of-bounds writes to the stack
and enabled Firefox to survive the attack.
Unchecked JavaScript Type Exploits: Both exploits 290162 and
295854 download JavaScript code that creates an object, then fills
the object with malicious code and data. A JavaScript system rou-
tine fails to check the type of the object and (eventually via a se-
quence of operations) invokes downloaded code via a C++ virtual
function call on the corrupted object.

During learning ClearView learned a one-of invariant at the vir-
tual function call site for both errors. These invariants state that
the call site may invoke only a function that was invoked at that



site during learning. The first patch that ClearView applied dur-
ing repair evaluation enforced the invariant by invoking a specific
previously invoked function instead of jumping to malicious code.
This patch successfully corrected the error from exploit 290162,
but failed to correct the error from exploit 295854. ClearView’s
second applied patch, which enforced the invariant by skipping the
call, successfully corrected the error from exploit 295854.
Memory Management Exploits: Exploit 312278 enables down-
loaded JavaScript code to obtain a pointer to an object that is incor-
rectly garbage collected, then reallocated to hold a native Firefox
C++ object. The downloaded JavaScript code then overwrites the
C++ object’s virtual function table pointer with a pointer to mem-
ory containing pointers to malicious downloaded code. During
learning ClearView learned a one-of invariant at the virtual func-
tion call site that invokes the malicious code. This invariant states
that the call site may invoke only one of the functions invoked at
that site during learning. The first patch that ClearView applied dur-
ing repair evaluation successfully corrected the error by invoking a
specific previously invoked function.

Exploits 269095 and 320182 involve memory that is not reinitial-
ized after it is reallocated. Under certain circumstances it is possi-
ble to manipulate Firefox into treating this uninitialized memory as
a C++ object, then invoking a virtual function call on this unini-
tialized object. Downloaded JavaScript code can exploit this error
to fill the memory with appropriately formatted malicious code and
pointers before it is reallocated. In this case the virtual function call
invokes the malicious code. During learning ClearView learned a
one-of invariant at the virtual function call site that invokes the ma-
licious code. One of the patches that ClearView applied during
repair evaluation enforced the invariant by returning from the func-
tion that contains the call site before the call site is invoked. This
patch enabled Firefox to survive the attack.

Before trying this patch, ClearView tried patches that invoke one
of the previously observed functions and a patch that skips the call
but executes the remaining part of the function following the call.
None of these patches enabled Firefox to survive the attack.
Out-of-Bounds Array Access Exploits: Exploit 311710 causes
Firefox to compute a negative array index, then use the index to
attempt to retrieve a C++ object from the array. Downloaded Java-
Script code previously caused the retrieved memory to contain point-
ers to downloaded code. When Firefox performs a virtual function
call on the retrieved object, it invokes the downloaded code.

During learning ClearView learned a lower-bound invariant that
requires the array index to be non-negative. During repair evalua-
tion ClearView applied a patch that enforces this invariant by set-
ting the array index to zero. This patch caused Firefox to retrieve
a valid C++ object, the resulting virtual function call invoked valid
code, and Firefox survived the attack.

The same defect that caused this error was present in three simi-
lar procedures (apparently created via copy and paste) that executed
during the attack. A similar patch corrected each error from these
defects.

4.3.2 Remaining Exploits

During the Red Team exercise, ClearView did not generate a suc-
cessful patch for three of the Red Team’s exploits.

Exploit 285595 targets code for a Netscape GIF extension. Be-
cause this code does not check the sign of a value extracted from
the GIF file, it is vulnerable to a remotely exploitable heap overflow
attack. During the Red Team exercise, ClearView’s correlated in-
variant identification component was configured to consider invari-
ants from only the lowest procedure on the stack with invariants.
The relevant invariant appeared one procedure above this proce-

dure. ClearView therefore did not produce a patch that corrected
the error. We subsequently verified that changing the configuration
to include additional procedures on the stack enabled ClearView
to generate a successful patch that corrects this error. The rele-
vant invariant is a lower-bound invariant involving a buffer index.
The repair changes the index from a negative value to zero, thereby
bringing out-of-bounds writes back into the buffer. The exploit it-
self is embedded within an image file. The repair neutralizes the
attack and enables Firefox to display the image correctly.

Exploit 325403’s attack vector is a HTML file, one of whose tag
values is eventually used as a buffer growth size for data that does
not fit in an allocated buffer that holds two-byte Unicode charac-
ters. By specifying a value very close to the largest representable
unsigned integer, an attacker can cause the calculation of the new
buffer size to overflow, causing Firefox to allocate a buffer that
is too small. An ensuing memcpy then writes beyond the end of
the allocated buffer. The Blue Team’s learning suite for the Red
Team exercise did not provide sufficient coverage for Daikon to
learn the relevant invariant. We subsequently verified that, using an
expanded learning suite, Daikon would have learned an invariant
that would have enabled ClearView to generate a successful patch.
The relevant invariant is a less-than invariant relating the buffer size
to the size of the memory to copy into the buffer. The repair sets the
copy size to the buffer size, eliminating the out-of-bounds writes.

Exploit 307259 causes Firefox to compute an incorrect size for a
buffer holding a hostname that contains soft hyphens. When Fire-
fox attempts to copy a number of items into this buffer, the copies
write beyond the end of the buffer. ClearView did not generate a
successful patch because Daikon’s invariants are not rich enough
to capture the error. The appropriate invariant would generalize
Daikon’s less-than invariant (which relates two quantities) to relate
a sum of buffer lengths to another buffer length. Learning richer
invariants would be possible, but would increase the cost of the
learning component.

4.3.3 Comparison With Manual Fixes

Manual fixes are available for the defects that the exploits in the
Red Team exercise exploited. For exploit 269095, the manual fix
tags deallocated objects as invalid. Subsequent object uses check
this tag. If the tag is invalid, the use returns an error. The fix also
iterates over invalid objects to reinitialize relevant data. For exploit
285595, the manual fix removes the code containing the defect.
This code implemented a Netscape GIF extension; the fix removes
support for this extension from Firefox. For exploits 290162 and
295854, the manual fix checks the type of the JavaScript object.
If the check fails, the enclosing method (which otherwise invokes
a method on the object) simply returns null. For exploit 296134,
the manual fix adds a check for negative string length. If the check
fails, the enclosing method logs an error, returns, and does not per-
form the copy. The fix also includes a check in the calling method
that truncates the string length to the allocated buffer size. The
manual fix for 311710 corrects a conditional that caused the appli-
cation to compute the negative array index.

For exploit 312278, the manual fix informs the garbage collector
that it holds a reference to the relevant object. Once the garbage
collector is aware of this reference, it does not collect the object
and the memory holding the object is unavailable to the JavaScript
code in the exploit. For exploit 320182, the manual fix sets a flag
that identifies reallocated objects. Subsequent code checks the flag
to identify and properly initialize any such reallocated objects. For
exploit 325403, the manual fix checks that the target array is large
enough to hold the data in the source array. If the check fails, the
fix allocates a larger target array and retries the copy.



Some of these manual fixes perform a consistency check close
to the error, then skip the remaining part of the operation if the
check fails. All ClearView patches similarly perform a consistency
check (the invariant satisfaction check) close to the error. Two of
the ClearView repairs (skip call and return from enclosing proce-
dure) have a similar effect of explicitly skipping part or all of the
remaining part of the operation. Other repairs (adjusting values to
enforce lower-bound and less-than relationships) often have the ef-
fect of enabling the application to execute the remaining part of the
operation safely with the effect of any remaining errors localized
to that operation. In general, the ClearView repairs tend to execute
more of the normal-case code following the error, while the manual
fixes tend to simply abort the current operation. We attribute this
more drastic approach to the maintainer attempting to simplify the
reasoning required to confirm that the fix has eliminated the error.

It would be possible to enhance ClearView to produce checks
and repairs that more closely correspond to these manual fixes. For
example, it would be possible to enhance ClearView to automat-
ically infer object types at dynamically dispatched method invo-
cations and to return error codes from enclosing procedures when
invariant checks fail. It would also be possible to develop repairs
that skip larger parts of the subsequent computation.

Some of the manual fixes inform the garbage collector of exist-
ing references and reinitialize recycled memory. These fixes af-
fect code far from the failure location. ClearView would therefore
need to apply a more sophisticated correlated invariant identifica-
tion strategy (and potentially more sophisticated invariants as well)
to produce repairs with similar effects.

4.3.4 Multiple Variant Attacks

For three defects, the Red Team generated multiple variants of
the exploit that targeted the defect. For each defect the Red Team
interleaved different variants during the attack. ClearView gener-
ated the same patch after the same number of attacks as for the cor-
responding single variant attack. This patch successfully protected
Firefox against all variants of the attack.

4.3.5 Simultaneous Multiple Exploit Attacks

The Red Team launched several attacks that interleaved exploits
that targeted different defects. The goal was to determine if tar-
geting different defects with different exploits would impair Clear-
View’s ability to generate successful patches. In each case Clear-
View was able to determine the targeted error for each attack, keep
the learning data separate for the different errors, and generate a set
of patches that together successfully protected Firefox against all
of the exploits in the attack. And ClearView was able to generate
these patches after the same cumulative number of attacks as for
the corresponding sequence of single variant attacks.

4.3.6 Repair Evaluation

The Red Team was unable to launch a successful induced au-
toimmune attack. For all of the previous attack scenarios the Red
Team evaluated the quality of the repair by determining whether the
patched version of Firefox displayed the evaluation web pages cor-
rectly: whether the displays were identical and whether there was
any other behavioral change that the Red Team could detect. The
Red Team was unable to detect any difference between the origi-
nal and patched Firefox on non-attack webpages. The same was
true for a Firefox that was patched with when all of the successful
patches generated during the previous attacks.

The ClearView repair evaluation mechanism is designed to dis-
card patches that have a negative effect on the application. Clear-
View generated patches with negative effects (such as causing the
application to crash) during the Red Team exercise. But the re-

Page Load Overhead
ClearView Configuration Time (seconds) Ratio

Bare Firefox 7.5 1.0
Memory Firewall 11.0 1.5
Memory Firewall + Shadow Stack 14.9 2.0
Memory Firewall + Heap Guard 19.0 2.5
Memory Firewall + Heap Guard +

22.7 3.0
Shadow Stack

Table 2: Page load times and overheads for different ClearView

configurations running Firefox.

pair evaluation mechanism detected and discarded these patches,
mitigating the effect on the application and paving the way for the
application of successful patches.

4.3.7 False Positive Evaluation

The Red Team’s false positive evaluation used ClearView to dis-
play the evaluation web pages. The goal was to make ClearView
generate an unnecessary patch. During this evaluation ClearView
generated no patches at all, indicating that the Red Team was un-
able to cause ClearView to produce a false positive.

4.4 Performance
The Red Team exercise used a Dell 2950 rack-mount machine

with 16 GB of RAM and two 2.3 GHz Intel Xeon processors, each
with four processor cores. We ran Firefox inside VMware virtual
machines under ESX servers. The operating system was Windows
XP Service Pack 2. Because the Red Team’s exploit 296134 has
no effect in this environment, we ran this exploit on a 1.8 GHz
AMD Opteron machine with four processor cores and 8 Gbytes of
RAM running Windows XP Service Pack 2. In this environment
the exploit does trigger the error. Because the exploit is running on
a slower computing platform, the execution times for the various
activities are longer than the corresponding times for other exploits.

4.4.1 Learning Overhead

The time required to load the twelve learning web pages without
learning enabled was 5.2 seconds. The time required to load these
same web pages with learning enabled was 1600 seconds (over a
factor of 300 slower). The Daikon x86 front end, which records
and dumps the values of accessed memory locations and registers,
is responsible for the vast majority of the overhead. As described in
Section 3.1, it is possible to distribute the learning in parallel across
the application community.

4.4.2 Baseline Overheads

Table 2 presents the times required for Firefox to load the 57
evaluation pages from a local disk with the network interface dis-
abled when running under various ClearView configurations. We
ran the experiments on an Intel Core 2 Duo E6700 (2.66 GHz,
4 MB L2 Cache, 3.25 GB RAM) running Windows XP Service
Pack 3. The Determina Managed Program Execution Environment
(with Memory Firewall enabled) imposes a 47% overhead over run-
ning Firefox as a standalone application. This overhead is some-
what larger than typically observed [5]. We attribute this additional
overhead to Firefox’s use of object-oriented constructs such as dy-
namic method dispatch. The underlying DynamoRIO code cache
implementation of indirect jump instructions is relatively less effi-
cient than implementations of other instruction patterns [5].

4.4.3 Patch Generation Time

On average ClearView took 4.9 minutes from the time of the first
exposure to a new exploit to the time when it obtained a successful



Shadow Stack Building Installing Invariant Building Repair Installing Unsuccessful
Bugzilla + Heap Guard Invariant Checks Invariant Check Runs Patches [# of Repair Repair Runs Successful
Number Runs [# of Checks] Checks (violated/total checks) Correlated Inv.s] Patches (# of Runs) Repair Run Total

269095 25.3 12.7 [1,0,1] 8.7 52.0 (4/28) 11.0 [1,0,0] 7.3 51.4 (2) 34.5 202.8
285595* 25.4 12.2 [0,5,0] 8.5 74.3 (6/2216) 11.5 [0,3,0] 8.8 - 31.8 172.4
290162 27.1 9.8 [2,0,0] 7.8 47.7 (2/2) 10.9 [1,0,0] 8.4 - 32.6 144.3
295854 32.8 8.8 [1,0,0] 9.2 66.3 (2/0) 10.3 [1,0,0] 8.1 31.1 (1) 39.8 206.5
296134 39.3 63.8 [0,42,10] 5.9 279.1 (?/?) 30.3 [0,?,?] 6.2 - 50.2 474.8
307259! 26.1 49.4 [0,4,26] 4.5 1235.5 (7444/29428) 39.7 [0,1,6] 6.3 347.7 (7) - 1709.1
311710a 52.0 14.2 [0,1,2] 9.2 151.3 (60/1460) 11.3 [0,1,0] 6.8 - 69.1 313.9
311710b 60.5 13.5 [0,1,2] 8.3 152.3 (60/1460) 13.4 [0,1,0] 5.5 - 57.6 311.0
311710c 51.6 17.6 [0,1,2] 8.4 161.4 (60/1460) 16.2 [0,1,0] 8.2 - 64.0 327.3
312278 24.3 8.6 [1,0,0] 7.2 48.5 (2/0) 11.7 [1,0,0] 8.0 - 33.3 141.5
320182 25.3 12.7 [1,0,1] 8.7 52.0 (4/28) 11.0 [1,0,0] 7.3 51.4 (2) 34.5 202.8
325403* 24.2 16.9 [0,0,2] 5.9 46.8 (4/0) 10.6 [0,0,2] 6.0 - 33.5 143.9

Table 3: ClearView attack processing times, in seconds. Because all timing events were measured on the central ClearView Manager,

the times include communication times between the protected client and the manager. Attacks for exploit 296134 were run on a

slower computer (see Section 4.4.4). A * identifies the two exploits for which ClearView did not successfully generate a patch during

the Red Team exercise, but did successfully generate a patch in subsequent experiments after reconfiguration. A ! identifies the

exploit for which ClearView did not successfully generate a patch in either the Red Team exercise or in subsequent experiments. The

row for exploit 296134 is missing several values — we did not record these values during the Red Team exercise, and are now unable

to recreate the environment required to run the (rather fragile) exploit that the Red Team used.

patch for that exploit. This is not the time required to stop a propa-
gating attack — Memory Firewall terminates the application before
the attack can take effect, so there is no propagation. These times
instead reflect how long users must wait before they have a patched
version of the application that provides continuous, uninterrupted
service even while under attack.

The 4.9 minutes includes an average of 5.4 executions: to de-
tect the failure and select a set of candidate correlated invariants, to
collect invariant-checking results to identify correlated invariants,
and to evaluate candidate repairs. These averages include one out-
lier, for which ClearView took 13 minutes to sequentially correct
three distinct errors in the application, all of which were exploited
by the same attack — after ClearView repaired one error, the same
exploit triggered an error from a different defect which ClearView
then detected and repaired, and so on.

4.4.4 Patch Creation Time Breakdowns

When considering how much time ClearView takes to create a
successful repair, one key comparison to keep in mind is the 28
days (on average) that it takes for developers to create and distribute
a patch for a security exploit [47]. This section breaks down Clear-
View’s 4.9 minutes (on average) time to do the same.

Table 3 presents the different components of the time Clear-
View requires to generate a successful repair. All times are in sec-
onds. With the exception of exploit 311710, there is one row for
each exploit. The first column of each row presents the Bugzilla
number of the exploit. Exploit 311710 has three rows (labeled
311710a, 311710b, and 311710c). As described above in Sec-
tion 4.3.1, ClearView corrected three distinct errors before enabling
Firefox to finally survive the attack. The table places each error in
a separate row.
Shadow Stack + Heap Guard Runs: The second column of each
row (Shadow Stack + Heap Guard Runs) in Table 3 presents the
time required to replay the exploit to detection with the Shadow
Stack and Heap Guard turned on. The vast majority of this time
is spent warming up the Determina Managed Program Execution
Environment code cache when we restart Firefox to process the ex-
ploit. For all exploits except 311710, this time is roughly 20 to 30
seconds. Because exploit 311710 exercises more Firefox function-
ality than the other exploits, the times are higher for this exploit.

It is possible for ClearView to successfully correct errors with

only Memory Firewall enabled. To our surprise, Heap Guard did
not improve ClearView’s performance in the Red Team exercise —
ClearView needs only Memory Firewall and Shadow Stack to gen-
erate successful patches for the seven exploits that it successfully
patched during the Red Team exercise. Heap Guard is required for
the remaining two exploits for which ClearView was able to subse-
quently generate successful patches after configuration changes.
Building and Installing Invariant Checks: The Building Invari-
ant Checks column presents the time required to build all of the
invariant check patches. This time includes compiling the auto-
matically generated C source code for the patches and loading the
patches into a DLL for presentation to the Determina patch man-
agement system. Each entry has the form t[x,y,z], where t is the
time required to build the invariant checks, x is the number of
checked one-of invariants, y is the number of checked lower-bound
invariants, and z is the number of checked less-than invariants. Ex-
ploit 296134 is an outlier, in part because ClearView compiled
many more invariant check patches than for the other exploits and
in part because the compiles took place on a slower computing plat-
form. The Installing Invariant Checks column presents the time re-
quired for the Determina patch management system to transmit and
apply the patches to the application running on the client machine.
Invariant Check Runs: The Invariant Check Runs column presents
the time required to replay the exploit to detection twice with the
invariant check patches in place. Each entry has the form t(x/y),
where t is the time required to replay the exploit to detection twice,
x is the number of times a checked invariant was violated during
these runs, and y is the total number of invariant checks executed
during these runs. The time t includes the time required to commu-
nicate the necessary invariant check, shadow stack, and attack lo-
cation information to the ClearView Manager. As with the Shadow
Stack + Heap Guard Runs, much of the time was spent warm-
ing up the Determina Managed Program Execution Environment
code cache. For exploit 296134, ClearView also spent a substan-
tial amount of time communicating invariant check results to the
ClearView Manager using the Windows event queue mechanism.
Building and Installing Repair Patches: The Building Repair
Patches column presents the time required to build all of the re-
pair patches for the correlated invariants to evaluate. Each entry
has the form t[x,y,z], where t is the time required to build the re-
pair patches, x is the number of correlated one-of invariants, y is



the number of correlated lower-bound invariants, and z is the num-
ber of correlated less-than invariants. All of the correlated one-of
invariants involve function pointers. As described above in Sec-
tion 2.5.1, such invariants have three potential repairs. ClearView
compiles a patch for each such repair. The other kinds of invariants
each have a single repair with a single repair patch. The Installing
Repair Patches column presents the time required to communicate
these patches to the client machine. The client machine applied
specific repair patches one at a time in response to directives from
the central ClearView Manager.
Unsuccessful Repair Runs: The Unsuccessful Repair Runs col-
umn presents the time (if any) required to execute Firefox to com-
pletion for any unsuccessful repair patches. Each entry has the form
t(x), where t is the time required to execute Firefox to completion
and x is the number of unsuccessful runs (if any). We attribute the
small number of unsuccessful runs to the effectiveness of the corre-
lated invariant selection policy in targeting invariants whose repairs
are likely to correct the error, and to the effectiveness of the candi-
date repair ordering rule in selecting an effective repair to evaluate
first.
Successful Repair Run: The Successful Repair Run column shows
the time required to execute Firefox with the successful repair patch
applied. Because this patch corrects the error and eliminates the at-
tack detection, the patch was judged to succeed ten seconds after it
executed with no subsequent attack detection. The presented time
includes this ten seconds. At this point, ClearView had generated
and identified a patch that corrected the error and enabled continued
successful execution.

The final column is the sum of the times in the other columns. It
presents the total time required to automatically obtain a successful
patch for the corresponding attack.

An alternate deployment environment would enable only Mem-
ory Firewall during production use, with Heap Guard and the Shadow
Stack enabled only after the detection of the first attack. In this
case, the application’s normal overhead would be 1.5 instead of 3.0
(see Table 2), but the total time would be increased by adding one
Memory Firewall run.

4.4.5 Reducing ClearView’s Overhead

There are three primary sources of inefficiency in the current
ClearView attack response system: warming up the code cache (all
“Run” columns), using Windows event queues as the communi-
cation mechanism between community members and the central
server (“Installing” and “Run” columns), and compiling the invari-
ant check and repair patches (“Building” columns). It is possible
to eliminate the cache warm up time by saving the cache state from
a previous run, then restoring this state upon startup. It is pos-
sible to dramatically reduce the communication time by using a
more efficient communication mechanism. It is possible to elim-
inate the compilation time by generating binary code directly in-
stead of generating, then compiling C code. Together, we estimate
that these optimizations would enable ClearView to produce suc-
cessful patches in tens of seconds, rather than in minutes.

4.5 Other Applications
We expect the Firefox results to be broadly representative of

ClearView’s behavior for other server applications. Both failure-
oblivious computing [35, 33, 36] and transactional function termi-
nation [42, 41] enable a range of servers to survive errors and at-
tacks. Some of the ClearView patches have a similar effect as these
techniques. Because ClearView is based on inferred invariants that
capture aspects of the application’s semantics, it is able to gener-
ate more targeted and therefore potentially more effective repairs.
ClearView also incorporates a broader range of repair strategies and

evaluates the resulting multiple candidate repairs to discard inef-
fective or damaging repairs, which may enhance its ability to find
successful patches.

Survival strategies are not applicable in all circumstances. Sur-
vival strategies are best suited to applications with high availabil-
ity requirements, and those that can tolerate some variation in the
computational result (such as information retrieval, or processing
sensory data). Survival techniques are less appropriate for appli-
cations (such as compiler transformations) with precise, logically
defined correctness requirements, long dependence chains that run
through the entire computation, and less demanding availability re-
quirements. Even for such applications, ClearView may have a
place as a debugging aid.

5. LIMITATIONS
The goal of ClearView is not to correct every conceivable error.

The goal is instead to correct a realistic class of errors to enable ap-
plications with high availability requirements to successfully pro-
vide service in spite of these errors.

There exist errors that are completely outside the scope of Clear-
View, i.e., errors for which there is no plausible learned invariant
whose enforcement would enable the application to survive. But
even if the error is within the scope of the overall ClearView ap-
proach, ClearView may be unable to find a repair that enables the
application to survive the error:

• Learning: Daikon comes preconfigured to learn a specific set
of invariants. (End users may change the configuration or even
define new invariant templates.) This set may not include any
invariant that enables ClearView to generate a patch for a given
error. And even if the set does include such an invariant, the
learning phase may not provide enough coverage of the applica-
tion to enable Daikon to learn this invariant.

• Monitoring: ClearView currently uses Memory Firewall to de-
tect control-flow-transfer errors and Heap Guard to detect out-
of-bounds-write errors. Additional detectors would be required
to detect other kinds of errors.

• Candidate Invariant Selection: Every repair enforces an in-
variant that ClearView selected as a candidate correlated invari-
ant. Even if ClearView inferred an invariant with a repair that
would correct the error, the failure may occur sufficiently far
from the error for ClearView to not include the invariant in the
set of candidate correlated invariants, or to delay ClearView’s
response.

• Repair: The repair mechanism comes with a specific set of in-
variant enforcement mechanisms; each such mechanism corre-
sponds to a specific repair strategy. It is possible that none of
these repair strategies produces a successful repair.

It is also possible for ClearView to impair the functionality of the
application or even to create new vulnerabilities:

• Functionality Impairment: It is possible for a ClearView re-
pair patch to impair the functionality of the application. If the
patch is applied in response to a legitimate attack, the function-
ality impairment may be a reasonable price to pay for elimi-
nating the vulnerability. Two facts minimize the likelihood that
ClearView will apply a patch in the absence of an error or attack:
(1) ClearView applies patches only in response to a detected
failure — in the current implementation, an illegal control flow
transfer or out-of-bounds write. (2) ClearView enforces the in-
variant only if it is correlated with the failure. These two facts
also minimize the likelihood that an applied ClearView patch
will interfere with the processing of a legitimate input.
The ClearView patch evaluation mechanism enables ClearView
to recognize and discard patches that do not eliminate the failure



or cause the application to crash. ClearView generated several
patches with negative effects during the Red Team exercise. The
ClearView patch evaluation mechanism detected these negative
effects and discarded the patches.

• Patch Subversion: It is theoretically possible for an adversary
to subvert the ClearView patch mechanism to install its own ma-
licious patches. We note that ClearView builds on the commer-
cially deployed Determina patch distribution mechanism, which
uses standard authentication and encryption mechanisms to en-
sure patch integrity.

• Malicious Nodes: It is possible for a malicious node or nodes
to provide ClearView with false information that may cause it
to generate an inappropriate patch. It is possible to mitigate this
possibility via statistical methods and by reproducing the error
and evaluating the generated patches on trusted nodes before
distributing the patches throughout the community. Malicious
nodes were not part of the threat model for our Red Team Exer-
cise but are an interesting avenue for future research.

6. RELATED WORK
We discuss additional related work in invariant inference, attack

detection mechanisms, automatic filter generation, checkpoint and
replay techniques, and error tolerance and correction.

6.1 Invariant Inference and Immunity
ClearView uses an inferred specification to focus the patching

process and correct errors. We discuss several other projects that
use inferred specifications to improve system behavior or security.

Our system for automated program steering [25] uses machine
learning over correct executions, then changes the control flow of
bad executions. When an application fails or underperforms, the
system chooses a different operational mode that has been success-
ful in the past, in situations like the current situation.

We previously developed a system [13] that automatically in-
ferred data structure consistency constraints and created repairs [15]
to enforce them. This system was also evaluated by a (different)
hostile Red Team. In contrast to ClearView, this previous system
required source code, performed learning only once without subse-
quent refinements, applied only repairs that it statically verified to
always terminate in a repaired state, and did not observe subsequent
executions to evaluate the quality of the repairs.

FFTV (From Failures to Vaccine) [28] infers invariants that model
normal behavior. At run time, violations of a programmer-written
specification cause FFTV to record a “failure context”, consisting
of violated invariants and the stack backtrace. If a failure context
is encountered again, the next method call is performed transaction-
ally. Dimmunix [22] prevents programs from re-entering previously-
seen deadlock states. When the application deadlocks, Dimmunix
records a “deadlock signature” indicating each thread’s stack and
the locks it holds. If a lock acquisition would cause the signature is
encountered again, then the thread is made to yield instead. As with
FFTV, false positives in the learning process affect the performance
but not the correctness of the application.

Gibraltar [3] detects rootkits by observing their effect on dynam-
ically inferred specifications that are derived from normal execu-
tions. Gibraltar can detect rootkits that affect only data structures
(not control), which can elude other approaches to rootkit detection.
This is an application of invariant detection for anomaly detection,
but unlike the above projects, it does not correct the problem.

6.2 Attack Detection Mechanisms
The current ClearView implementation uses two attack detec-

tion techniques: program shepherding to detect and block mali-
cious control flow transfers, and heap overflow checks to detect and

block out-of-bounds writes to the heap. ClearView can work with
any attack detection technique that provides an attack location.

StackGuard [10] and StackShield [45], for example, use a mod-
ified compiler to generate code to detect attacks that overwrite the
return address on the stack. StackShield also performs range checks
to detect overwritten function pointers. Researchers have also built
compilers that insert bounds checks to detect memory addressing
errors in C programs [2, 49, 7, 20, 37, 21, 23]. Drawbacks of these
techniques include the need to recompile the program, the over-
head of the dynamic bounds checks, and, in some cases, the need to
change the program itself [7, 23]. Dynamic taint analysis finds ap-
pearances of potentially malicious data in sensitive locations such
as function pointers or return addresses [46, 11, 29]. It would be
possible to make ClearView work with all of these detectors, al-
though the high overhead and potential need for recompilation or
even source code changes goes against ClearView’s philosophy of
operating on stripped Windows binaries and minimizing the over-
head during normal execution.

An expensive attack detection mechanisms can be distributed
across a community of machines, with each application instrument-
ing only a small portion of its execution [27], or applied only to a
honeypot [44, 39, 1]. These approaches can leave the production
versions unprotected against new attacks.

In contrast to systems that apply their attack analyses across
broad ranges of the application, ClearView uses the attack loca-
tion to dramatically narrow down the region of the application that
it instruments during its attack analysis and response generation
activities. This makes it possible to deploy sophisticated but ex-
pensive analyses within this focused region of the application while
still keeping the total overhead small. This is effective only if Clear-
View identifies the invariant required to correct the underlying error
in the application logic.

6.3 Automatic Filter Generation
A standard way to protect applications against attacks is to de-

velop filters that detect and discard exploits before they reach a
vulnerable application. Vigilante uses honeypots to detect attacks
and dynamically generate filters that check for exploits that fol-
low the same control-flow path as the attack to exploit the same
vulnerability [9]. Bouncer uses symbolic techniques to generalize
Vigilante’s approach to filter out more exploits [8]. ShieldGen uses
Vigilante’s attack detection techniques to obtain exploits [12]. It
generates variants of each exploit and tests the variants to see if
they also exercise the vulnerability. It then produces a general filter
that discards all such variants.

Sweeper uses address randomization for efficient attack detec-
tion [48]. This technique is efficient enough to be deployed on
production versions of applications, but provides only probabilis-
tic protection and therefore leaves applications still vulnerable to
exploitation [38]. Sweeper uses attack replay in combination with
more expensive attack analysis techniques such as memory access
checks, dynamic taint analysis, and dynamic backward slicing. It
uses the information to generate filters that discard exploits before
they reach vulnerable applications. Sweeper also builds vulnerability-
specific execution filters, which instrument selected instructions in-
volved in the attack to detect the attack. The attack response is to
use rollback plus replay to recover from the attack.

Discarding inputs that may contain exploits can deny users ac-
cess to content that they need or want to access. It is possible for
useful information sources such as legitimate web pages or images
to become surreptitiously infiltrated with exploits. Attackers may
also create attractive content containing exploits, specifically for
the purpose of enticing users to access it via vulnerable applica-
tions. Just as some Internet content is created for the purpose of



generating advertising revenue, an alternate (and presumably ille-
gal) business model would substitute attacks for advertisements. In
all of these cases it is desirable for applications to process inputs
containing exploits without enabling the attacks to succeed.

By enabling applications to execute successfully through other-
wise exploitable errors, ClearView can enable users to access infor-
mation even if the input containing the information also contains an
exploit. The ClearView repair for one of the heap overflow errors in
the Red Team exercise, for example, makes it possible for users to
view image files that also contain exploits (or that contain innocent
data that happens to exercise the vulnerability).

6.4 Checkpoint and Replay
A traditional and widely-used error recovery mechanism is to

reboot the system, with operations replayed as necessary to bring
the system back up to date [19]. It may also be worthwhile to re-
cursively restart larger and larger subsystems until the system suc-
cessfully recovers [6]. Checkpointing [26] can improve the perfor-
mance of the basic reboot process and help minimize the amount of
lost state in the absence of replay. Checkpointing also makes it pos-
sible to discard the effects of attacks and errors to restore the sys-
tem to a previously saved clean operational state. This approach,
in some cases combined with replay of previously processed re-
quests or operations that do not contain detected exploits, has been
proposed as an attack response mechanism [43, 32, 40, 41, 48].

In comparison with ClearView’s approach of continuing to exe-
cute through attacks, checkpoint plus replay has several drawbacks.
These include service interruptions as the system recovers from
an attack (these service interruptions can occur repeatedly unless
the system is otherwise protected against repeated attacks), the po-
tential for replay to fail because of problematic interactions with
external processes or machines that are outside the scope of the
checkpoint and replay mechanism, lost state if the system chooses
to forgo replay, and complications associated with applying check-
point and replay to multithreaded or multiprocess applications.

6.5 Error Tolerance and Correction
Techniques that allow applications to tolerate errors such as out-

of-bounds memory accesses include transactional function termi-
nation [42, 39] (which restores the state at the time of the function
call, then returns from functions that perform out-of-bounds ac-
cesses), failure-oblivious computing [35] (which discards out-of-
bounds writes and manufactures values for out-of-bounds reads),
boundless memory blocks [34] (which store out-of-bounds writes
in a hash table for subsequent corresponding reads to access), and
DieHard [4] (which overprovisions the heap so that out-of-bounds
accesses are likely to fall into otherwise unused memory). These
techniques require no learning phase and no repeated executions
for correlated invariant selection and evaluation. ClearView differs
in that it applies checks and repairs only in response to attacks, it
does so in carefully targeted parts of the application identified by
correlated invariants, and it performs an ongoing evaluation of each
applied repair. ClearView may also be able to provide more infor-
mative error reports, since it can identify specific invariants whose
violation is correlated with errors.

ASSURE [41] generalizes transactional function termination to
enable the system to transactionally terminate any one of the func-
tions on the call stack at the time of the error (and not just the func-
tion containing the error). Attack replay on a triage machine en-
ables the system to evaluate which function to terminate to provide
the most successful recovery. The applied patch takes a checkpoint
at the start of the function. It responds to errors by restoring the
checkpoint, then returning an effective error code to terminate the
function and continue execution at the caller.

Exterminator [30] uses address space randomization to detect
out-of-bounds writes into the heap and accesses via dangling ref-
erences. It then corrects the errors by (as appropriate) increasing
the size of allocated memory blocks to accommodate the observed
out-of-bounds writes or delaying memory block deallocation until
the accesses via the corresponding dangling references have com-
pleted. Exterminator can combine patches from multiple users to
give members of a community of users immunity to out-of-bounds-
write and dangling-reference errors without prior exposure.

Genetic programming techniques can generate and search a space
of abstract syntax tree modifications with the goal of automatically
correcting an exercised defect in the underlying program [18]. A
test suite is used to evaluate the effectiveness of each generated ab-
stract syntax tree in preserving desirable behavior and eliminating
undesirable behavior.

All of these techniques can take the application outside of its
anticipated operating envelope. They therefore have the potential to
introduce new errors. Of course, ClearView’s patches also have the
potential to negatively affect the application. Because ClearView’s
patches only affect properties that are correlated with undesirable
behavior, ClearView is less likely to create bad patches. Because
ClearView performs an ongoing evaluation of each deployed patch,
it will quickly discard patches that enable negative effects (such as
crashes or attacks) in favor of more effective patches.

7. CONCLUSION
Errors in deployed software systems pose an important threat to

the integrity and utility of our computing infrastructure. Relying on
manual developer intervention to find and eliminate errors can deny
service to application users or even leave the application open to
exploitation for long periods of time. ClearView’s automatic error
detection and correction techniques can provide, with no human
intervention whatsoever, the almost immediate correction of errors,
including errors that enable newly-released security attacks. The
result is an application that is immune to the attack and can continue
to provide uninterrupted service.

ClearView is targeted toward applications with high availabil-
ity requirements, for which a small chance of unexpected behavior
is preferable to the certainty of denial of service. The feasibility of
our approach has been established by a hostile Red Team evaluation
in which ClearView automatically patched security vulnerabilities
without introducing new attack vectors that the Red Team could
exploit. We acknowledge that there are important reliability and
security problems that are outside the scope of ClearView. Nev-
ertheless, ClearView addresses an important and realistic problem,
and holds out the promise of substantially improving the integrity
and availability of our computing infrastructure.
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