Self-defending software:

Automatically patching
errors In deployed software
Michael Ernst

University of Washington

Joint work with:

Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Sung Kim, Samuel Larsen,
Carlos Pacheco, Jeff Perkins, Martin Rinard,
Frank Sherwood, Stelios Sidiroglou, Greg
Sullivan, Weng-Fai Wong, Yoav Zibin

Problem: Your code has bugs
and vulnerabilities

» Attack detectors exist
— Code injection, memory errors (buffer overrun)

 Reaction:

— Crash the application
* Loss of data
« Overhead of restart
« Attack recurs
* Denial of service

— Automatically patch the application

ClearView:
Security for legacy software

Requirements:

1. Protect against unknown vulnerabilities
2. Preserve functionality

3. Commercial & legacy software

1. Unknown vulnerabilities

* Proactively prevent attacks via unknown
vulnerabilities
— “Zero-day exploits”
— No pre-generated signatures
— No hard-coded fixes
— No time for human reaction
— Works for bugs as well as attacks

2. Preserve functionality

* Maintain continuity: application
continues to operate despite attacks
* For applications that require high availability

— Important for mission-critical applications
— Web servers, air traffic control, communications

* Technique: create a patch
(repair the application)
— Patching is a valuable option for your toolbox

3. Commercial/legacy software

* No modification to source or executables

* No cooperation required from developers
— Cannot assume built-in survivability features
— No source information (no debug symbols)

« x86 Windows binaries

L earn from success and fallure

 Normal executions show what the application
IS supposed to do

« Each attack (or failure) provides information
about the underlying vulnerability

* Repairs improve over time
— Eventually, the attack is rendered harmless
— Similar to an immune system

» Detect all attacks (of given types)

— Prevent negative consequences
— First few attacks may crash the application

normal
executions

all executions

Detect, learn, repair
[Lin & Ernst 2003]

Pluggable detector,

Attack <
detector

N
S
Q9
3
)
O

does not depend on learning

attacks
(or bugs)
l l Learn normal behavior (constraints)
Learning 4 | from successful runs
» Check constraints during attacks
predictive < .+ True on every good run
constraints False during every attack
A 4
Repair < o Patch to re-establish constraints
« Evaluate and distribute patches

patch {

| Restores normal behavior

A deployment of ClearView

Community machines

Server

-

replicated,

o

~

(Server may be

distributed, etc.)

J

Threat model does not (yet!)
include malicious nodes

<€

Encrypted, authenticated
communication

iy Tomgpon | (kg

) (oo} (ko

(I RO (X

Learning normal behavior

Observe normal behavior
Generalize observed behavior

Server

-

o

~

copy_len < buff_size

J

Server generalizes
(merges results)

e ya ‘0\)“
GOQ\J =

oNZ©
—

OPY_len < byff gjze

Community machines

Clients send
iInference results

) [k

iy Timgpon | (kg

(I RO (X

=

Clients do local inference

Attack detection & suppression

Community machines

— (—) (—)

Server = 1= |=

4 N — — —
—/ —/ —/
— (—) (—)

N / = 1= |=
— =) =
(—) (=) /=

Detectors used in our research: — — g —

— Code injection (Memory Firewall) — —

— Memory corruption (Heap Guard) — ass —
—) =

Many other possibilities exist _ _
Detector collects information

and terminates application

Learning attack behavior

Community machines

What was the effect of the attack? — N —

Server ; ; ;

4) — — —
—___ —___ —___
N (Y (Y

N — — —
—)) =
— g UG

=N | =
Clients send difference In \ —) \ —) \ —)

Server _correlates behavior: violated constraints Instrumentation continuously
constraints to attack < evaluates learned behavior

Repalr
Propose a set of patches for each Community machines
behavior that predicts the attack

Server

”~ TN

Predictive: copy len < buff_size

(

Candidate patches:
1. Set copy len = buff_size
2. Setcopy len=0
3. Set buff_size = copy_len
% Return from procedure /

(I R (I
) (o) (o
(I RO (X

Server generates
a set of patches

Repalir

Distribute patches to the community

Server \)a’(.d\ 3
(Ranking:)
Patch 1: 0O

Patch 2: 0 — Pat
Patch 3: 0 th 2

Community machines

- Y

I A R T
) (oo) (o

) (o) (o

Repalr

Evaluate patches Community machines

- —_—

Success = no detector Is triggered — ' —
Server \ed — —

a\ — LA —

/Ranking:) Pa’tC“ 1§ — ~ —

. +5 — —
taten 2 0 =) (=) (=
Patch 1: -5 o — — =

N / o = =] | =
s — — —
(/CC@ — — —
%, —
4 e\
When attacked, clients — —

send outcome to server Detector is still
running on clients

Server ranks patches <

Repalir

Redistribute the best patches

Server

/Ranking:

' +5
Patch 2: O
Patch 1: -5

~

J

Server redistributes the
most effective patches

>

i) (g

iy

Community machiges

!
I

— P

HWWWHUWWWH

i)

)

[

Outline

Overview

Learning normal behavior

Learning attack behavior

Repair. propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion

Learning normal behavior

Generalize observed behavior

Server

-

o

~

copy_len < buff_size

J

Server generalizes
(merges results)

e ya ‘0\)“
GOQ\J =

oNZ©
—

OPY_len < byff gjze

Community machines

Clients send
iInference results

) [k

iy Timgpon | (kg

(I RO (X

=

—

Clients do local inference

Dynamic invariant detection

« Daikon generalizes observed program executions

Candidate constraints: Remaining candidates:
copy_len < buff_size Observation: copy_len < buff_size
copy_len < buff _size copy_len: 22 copy_len < buff _size
copy_len = buff_size buff _size: 42 copy—ten=buff—size
copy_len = buff _size copyr—eR=hut—Ssze
copy_len > buff size — =————————————l eopytersFbui—size
copy_len # buff_size copy_len # buff_size

« Many optimizations for accuracy and speed
— Data structures, code analysis, statistical tests, ...

« We further enhanced the technique

Quality of inference results

Not sound

— Overfitting if observed executions are not representative
Not complete

— Templates are not exhaustive

Useful!

Unsoundness is not a hindrance

— Does not affect attack detection

— For repair, mitigated by the correlation step
— Continued learning improves results

Outline

Overview

Learning normal behavior

Learning attack behavior

Repair. propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion

Detecting attacks (or bugs)

Goal: detect problems close to their source

Code injection (Determina Memory Firewall)

— Triggers if control jumps to code that was not
In the original executable

Memory corruption (Heap Guard)
— Triggers if sentinel values are overwritten

These have low overhead and no false
positives

Other detectors are possible

Learning from failures

Each attack provides information about the
underlying vulnerability
— That it exists
— Where it can be exploited
— How the exploit operates
— What repairs are successful

Attack detection & suppression

Community machines

(D

= J

| () ()
| () ()

| (i

Detector collects information
and terminates application

Learning attack behavior
Where did the attack happen?

Server

o J

Detector maintains
a shadow call stack

scanf

read_input

process_record

main

Community machines

Client sends attack
info to server

(I R IO (I

(M

—:

(I R R (I

i) [

Detector collects information
and terminates application

Learning attack behavior

Extra checking in attacked code
Check the learned constraints

Server

-

~

scanf

read_input

process_record

main

chec

2

~/

Server generates
instrumentation for
targeted code locations

\\Y
V\Qﬁ o m§
\Q CO(!

Server sends instru-
mentation to all clients

Community machines

(DT

) (o) (o

I A R DT

=

—

> Clients install instrumentation

Learning attack behavior

Community machines
What was the effect of the attack? — N —
Server E E E
- — — — —
Predictive: — =
copy_len < buff_size (Y ((—Y ((—)
N J = = =
—) — =
_ (Y ((—))
22\ ¥ =
Clients send difference in \ —) \ —) \ —)

Server correlates behavior: violated constraints Instrumentation continuously
constraints to attack < evaluates inferred behavior

Correlating attacks & constraints

Check constraints only at attack sites
— Low overhead

A constraint is predictive of an attack if:
— The constraint is violated iff the attack occurs

Create repairs for each predictive constraint
— Re-establish normal behavior

Outline

Overview

Learning normal behavior

Learning attack behavior

Repair: propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion

Repalir

Distribute patches to the community

Community machines

Success = no detector Is triggered
Server \)a’(.d\x
(Ranking:)
Patch 1: 0 J
Patch 2: 0 — Pat
Paich 3: 0 ch 2
- J
yo)
6{0
&

Patch evaluation uses
additional detectors
(e.g., crash, difference in attack)

I A R T
) (oo) (o

) (o) (o

Attack example

Target: JavaScript system routine (written in C++)
— Casts its argument to a C++ object, calls a virtual method
— Does not check type of the argument

Attack supplies an “object” whose virtual table
points to attacker-supplied code

Predictive constraint at the method call:

— JSRI address target is one of a known set
Possible repairs:

— Call one of the known valid methods
— Skip over the call
— Return early

Repalr example

if (! (copy len = buff size))
copy len = buff size;

* The repair checks the predictive constraint
— |f constraint is not violated, no need to repair
— If constraint is violated, an attack is (probably) underway

* The patch does not depend on the detector
— Should fix the problem before the detector is triggered

* Repair is not identical to what a human would write
— Unacceptable to wait for human response

Example constraints & repairs

vV, <V,
if (VY (viSvy)) vy, = v,
V2=>C
if (Y (vze)) v = ¢,
V €{Cy, Cy, C3 }
if (Y (v==c; || v==c, || v==c3)) Vv = c;;
Return from enclosing procedure
if ('(.)) return;
Modify a use: convert “call *v' to
if (..) ,call *v;

% Constraint on v (not negated)

Evaluating a patch

* In-field evaluation
— No attack detector is triggered

— No other behavior deviations
« E.g., crash, application invariants

« Pre-validation, before distributing the patch:
* Replay the attack

+ No need to wait for a second attack

+ Exactly reproduce the problem

— Expensive to record log; log terminates abruptly
— Need to prevent irrevocable effects

— Delays distribution of good patches

* Run the program’s test suite

— May be too sensitive
— Not available for commercial software

Outline

Overview

Learning normal behavior

Learning attack behavior

Repair. propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion

Red Team

 Red Team attempts to break our system
— Hired by DARPA; 10 engineers

 Red Team created 10 Firefox exploits
— Each exploit is a webpage
— Firefox executes arbitrary code

— Malicious JavaScript, GC errors, stack
smashing, heap buffer overflow, uninitialized
memory

Rules of engagement

 Firefox 1.0

— ClearView may not be tuned to known
vulnerabilities

— Focus on most security-critical components
« No access to a community for learning

e Red T_eam has access to all ClearView
materials

— Source code, documents, learned invariants, ...

ClearView was successful

Detected all attacks, prevented all exploits

For 7/10 vulnerabilities, generated a patch
that maintained functionality

— No observable deviation from desired behavior
— After an average of 4.9 minutes and 5.4 attacks

Handled polymorphic attack variants
Handled simultaneous & intermixed attacks
No false positives

Low overhead for detection & repair

3 un-repaired vulnerabilities

Consequence: Application crashes when
attacked. No exploit occurs.

1. ClearView was mis-configured: didn't try
repairs in all procedures on the stack

2. Learning suite was too small: a needed
constraint was not statistically significant

3. A needed constraint was not built into
Daikon

Outline

Overview

Learning normal behavior

Learning attack behavior

Repair. propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion

Limitations

ClearView might fail to repair an error:
— Only fixes errors for which a detector exists
— Daikon might not learn a needed constraint
— Predictive constraint may be too far from error
— Built-in repairs may not be sufficient

ClearView might degrade the application:
— Patch may impair functionality
— Attacker may subvert patch
— Malicious nodes may induce bad patches

Bottom line: Red Team tried unsuccessfully

Related work

» Attack detection: ours are mostly standard

— Distributed: Vigilante [Costa], live monitoring
[Kiciman], statistical bug isolation [Liblit]

* Learning
— FSMs of system calls for anomaly detection
— Invariants: [Lin], [Demsky], Gibraltar [Baliga]

— System configuration: FFTV [Lorenzoli],
Dimmunix [Jula]

* Repair & failure tolerance

— Checkpoint and replay: Rx [Qin], microreboot
[Candea]

— Failure-oblivious [Rinard], ASSURE [Sidiroglou]

Credits

« Saman Amarasinghe
« Jonathan Bachrach
* Michael Carbin

* Michael Ernst

« Sung Kim

« Samuel Larsen

» Carlos Pacheco

Subcontractor: Determina, Inc.

Jeff Perkins
Martin Rinard
Frank Sherwood
Stelios Sidiroglou
Greg Sullivan
Weng-Fai Wong
Yoav Zibin

Funding: DARPA (PM: Lee Badger)

Red Team: SPARTA, Inc.

Contributions

ClearView: framework for patch generation
— Pluggable detection, learning, repair

1. Protects against unknown vulnerabilities
— Learns from success
— Learns from failure: what, where, how
— Learning focuses effort where it is needed

2. Preserves functionality: repairs the
vulnerabillity

3. Commercial software: Windows binaries
Evaluation via a Red Team exercise

