
Self-defending software:g

Automatically patching
errors in deployed software

Michael ErnstMichael Ernst
University of Washington

Joint work with:Joint work with:
Saman Amarasinghe, Jonathan Bachrach,
Mi h l C bi S Ki S l LMichael Carbin, Sung Kim, Samuel Larsen,
Carlos Pacheco, Jeff Perkins, Martin Rinard,

F k Sh d St li Sidi l GFrank Sherwood, Stelios Sidiroglou, Greg
Sullivan, Weng-Fai Wong, Yoav Zibin

Problem: Your code has bugs
d l bili iand vulnerabilities

• Attack detectors existAttack detectors exist
– Code injection, memory errors (buffer overrun)

Reaction:• Reaction:
– Crash the application

Loss of data• Loss of data
• Overhead of restart
• Attack recurs
• Denial of service

– Automatically patch the application

ClearView:
S it f l ftSecurity for legacy software

Requirements:Requirements:
1. Protect against unknown vulnerabilities
2 P f ti lit2. Preserve functionality
3. Commercial & legacy software

1. Unknown vulnerabilities1. Unknown vulnerabilities

• Proactively prevent attacks via unknownProactively prevent attacks via unknown
vulnerabilities

“Zero day exploits”– Zero-day exploits
– No pre-generated signatures

No hard coded fixes– No hard-coded fixes
– No time for human reaction

W k f b ll tt k– Works for bugs as well as attacks

2. Preserve functionality2. Preserve functionality

• Maintain continuity: applicationMaintain continuity: application
continues to operate despite attacks

• For applications that require high availabilityFor applications that require high availability
– Important for mission-critical applications
– Web servers, air traffic control, communicationsWeb servers, air traffic control, communications

• Technique: create a patch
(repair the application)(p pp)
– Patching is a valuable option for your toolbox

3. Commercial/legacy software3. Commercial/legacy software

• No modification to source or executablesNo modification to source or executables
• No cooperation required from developers

C t b ilt i i bilit f t– Cannot assume built-in survivability features
– No source information (no debug symbols)

• x86 Windows binaries

Learn from success and failureLearn from success and failure

• Normal executions show what the applicationNormal executions show what the application
is supposed to do

• Each attack (or failure) provides information
about the underlying vulnerability
R i i ti• Repairs improve over time
– Eventually, the attack is rendered harmless

Similar to an immune system– Similar to an immune system
• Detect all attacks (of given types)

– Prevent negative consequences– Prevent negative consequences
– First few attacks may crash the application

all executions Detect, learn, repair
[Li & E t 2003]

Attack
detector

Pluggable detector,
does not depend on learning

[Lin & Ernst 2003]

detector
attacks
(or bugs)

normal
executions

Learning
• Learn normal behavior (constraints)
from successful runs

• Check constraints during attacks

predictive
constraints

• True on every good run
• False during every attack

Repair • Patch to re-establish constraints
• Evaluate and distribute patches

patch Restores normal behavior

A deployment of ClearViewA deployment of ClearView
Community machines

(Server may be

Server

(Server may be
replicated,

distributed, etc.)

Threat model does not (yet!)
include malicious nodes

Encrypted, authenticated
communication

Learning normal behaviorLearning normal behavior
Community machinesObserve normal behavior

Generalize observed behavior

Server

…
copy_len ≤ buff_size
…

Clients send
inference results

Server generalizes
(merges results) Clients do local inference

Attack detection & suppressionAttack detection & suppression
Community machines

Server

Detectors used in our research:
– Code injection (Memory Firewall)
– Memory corruption (Heap Guard)

Detector collects information
and terminates application

– Memory corruption (Heap Guard)
Many other possibilities exist

Learning attack behaviorLearning attack behavior
What was the effect of the attack? Community machines

Server

Instrumentation continuously
evaluates learned behavior

Clients send difference in
behavior: violated constraintsServer correlates

constraints to attack

RepairRepair
Propose a set of patches for each
behavior that predicts the attack

Community machines

Server

p

Predictive: copy len ≤ buff size

Candidate patches:
1. Set copy_len = buff_size
2. Set copy len = 0

py_ _

py_
3. Set buff_size = copy_len
4. Return from procedure

Server generates
a set of patches

RepairRepair
Distribute patches to the community Community machines

Server

Ranking:
P t h 1 0Patch 1: 0
Patch 2: 0
Patch 3: 0
…

RepairRepair
Evaluate patches
Success = no detector is triggered

Community machines

Ranking:
P t h 3 5

Server

gg

Patch 3: +5
Patch 2: 0
Patch 1: -5
…

When attacked, clients
send outcome to server Detector is still

running on clientsServer ranks patches

RepairRepair
Redistribute the best patches Community machines

Server

Ranking:
P t h 3 5

Patch 3
Patch 3: +5
Patch 2: 0
Patch 1: -5
…

Server redistributes the
most effective patches

OutlineOutline

• OverviewOverview
• Learning normal behavior

L i tt k b h i• Learning attack behavior
• Repair: propose and evaluate patches
• Evaluation: adversarial Red Team exercise
• ConclusionConclusion

Learning normal behaviorLearning normal behavior
Community machinesGeneralize observed behavior

Server

…
copy_len ≤ buff_size
…

Clients send
inference resultsServer generalizes

(merges results) Clients do local inference

Dynamic invariant detectionDynamic invariant detection
• Daikon generalizes observed program executions

copy_len < buff_size
copy_len ≤ buff_size

l b ff i
copy_len: 22

ff

copy_len < buff_size
copy_len ≤ buff_size

l b ff i

Candidate constraints: Remaining candidates:
Observation:

copy_len = buff_size
copy_len ≥ buff_size
copy_len > buff_size
copy len ≠ buff size

buff_size: 42 copy_len = buff_size
copy_len ≥ buff_size
copy_len > buff_size
copy len ≠ buff size

• Many optimizations for accuracy and speed

py_ _ py_ _

Many optimizations for accuracy and speed
– Data structures, code analysis, statistical tests, …

• We further enhanced the techniqueq

Quality of inference resultsQuality of inference results

• Not sound
– Overfitting if observed executions are not representative

• Not complete
Templates are not exhaustive– Templates are not exhaustive

• Useful!
• Unsoundness is not a hindranceUnsoundness is not a hindrance

– Does not affect attack detection
– For repair, mitigated by the correlation step

Continued learning improves results– Continued learning improves results

OutlineOutline

• OverviewOverview
• Learning normal behavior

L i tt k b h i• Learning attack behavior
• Repair: propose and evaluate patches
• Evaluation: adversarial Red Team exercise
• ConclusionConclusion

Detecting attacks (or bugs)Detecting attacks (or bugs)

Goal: detect problems close to their sourceGoal: detect problems close to their source
Code injection (Determina Memory Firewall)

T i if t l j t d th t t– Triggers if control jumps to code that was not
in the original executable

M ti (H G d)Memory corruption (Heap Guard)
– Triggers if sentinel values are overwritten

These have low overhead and no false
positives

Other detectors are possible

Learning from failuresLearning from failures

Each attack provides information about theEach attack provides information about the
underlying vulnerability

That it exists– That it exists
– Where it can be exploited

How the exploit operates– How the exploit operates
– What repairs are successful

Attack detection & suppressionAttack detection & suppression
Community machines

Server

Detector collects information
and terminates application

Learning attack behaviorLearning attack behavior
Community machinesWhere did the attack happen?

Server scanf
read_input
process_recordp _
main

Detector maintains
a shadow call stack

Detector collects information
and terminates application

Client sends attack
info to server

Learning attack behaviorLearning attack behavior
Extra checking in attacked code
Check the learned constraints

Community machines

Server

scanf
read_input
process_record
main

Clients install instrumentation

Server generates
instrumentation for
targeted code locations

Server sends instru-
mentation to all clients

Learning attack behaviorLearning attack behavior
What was the effect of the attack? Community machines

Server

Predictive:Predictive:
copy_len ≤ buff_size

Instrumentation continuously
evaluates inferred behavior

Clients send difference in
behavior: violated constraintsServer correlates

constraints to attack

Correlating attacks & constraintsCorrelating attacks & constraints

Check constraints only at attack sitesCheck constraints only at attack sites
– Low overhead

A constraint is predictive of an attack if:A constraint is predictive of an attack if:
– The constraint is violated iff the attack occurs

Create repairs for each predictive constraint
– Re-establish normal behavior

OutlineOutline

• OverviewOverview
• Learning normal behavior

L i tt k b h i• Learning attack behavior
• Repair: propose and evaluate patches
• Evaluation: adversarial Red Team exercise
• ConclusionConclusion

RepairRepair
Distribute patches to the community
Success = no detector is triggered

Community machines

Server

gg

Ranking:
P t h 1 0Patch 1: 0
Patch 2: 0
Patch 3: 0
…

Patch evaluation uses
additional detectorsadditional detectors
(e.g., crash, difference in attack)

Attack exampleAttack example
• Target: JavaScript system routine (written in C++)

C t it t t C bj t ll i t l th d– Casts its argument to a C++ object, calls a virtual method
– Does not check type of the argument

• Attack supplies an “object” whose virtual table• Attack supplies an object whose virtual table
points to attacker-supplied code

• Predictive constraint at the method call:• Predictive constraint at the method call:
– JSRI address target is one of a known set

• Possible repairs:Possible repairs:
– Call one of the known valid methods
– Skip over the callp
– Return early

Repair exampleRepair example

if (! (copy len ≤ buff size))((py_ _))
copy_len = buff_size;

• The repair checks the predictive constraint
– If constraint is not violated, no need to repair

If t i t i i l t d tt k i (b bl) d– If constraint is violated, an attack is (probably) underway
• The patch does not depend on the detector

– Should fix the problem before the detector is triggeredShould fix the problem before the detector is triggered

• Repair is not identical to what a human would writeRepair is not identical to what a human would write
– Unacceptable to wait for human response

Example constraints & repairsExample constraints & repairs

v1 ≤ v2v1 ≤ v2
if (!(v1≤v2)) v1 = v2;

v ≥ c
if (!(v≥c)) v = c;

v ∈ { c1, c2, c3 }{ 1 2 3 }
if (!(v==c1 || v==c2 || v==c3)) v = ci;

Return from enclosing procedure
if (!(…)) return;

Modify a use: convert “call *v” to
if (…) call *v;

Constraint on v (not negated)

Evaluating a patchEvaluating a patch

• In-field evaluation
– No attack detector is triggered
– No other behavior deviations

• E g crash application invariantsE.g., crash, application invariants
• Pre-validation, before distributing the patch:

• Replay the attack
+ N d t it f d tt k+ No need to wait for a second attack
+ Exactly reproduce the problem
– Expensive to record log; log terminates abruptly

Need to prevent irrevocable effects– Need to prevent irrevocable effects
– Delays distribution of good patches

• Run the program’s test suite
May be too sensitive– May be too sensitive

– Not available for commercial software

OutlineOutline

• OverviewOverview
• Learning normal behavior

L i tt k b h i• Learning attack behavior
• Repair: propose and evaluate patches
• Evaluation: adversarial Red Team exercise
• ConclusionConclusion

Red TeamRed Team

• Red Team attempts to break our systemRed Team attempts to break our system
– Hired by DARPA; 10 engineers

• Red Team created 10 Firefox exploitsRed Team created 10 Firefox exploits
– Each exploit is a webpage
– Firefox executes arbitrary codeFirefox executes arbitrary code
– Malicious JavaScript, GC errors, stack

smashing, heap buffer overflow, uninitialized
memory

Rules of engagementRules of engagement

• Firefox 1.0
– ClearView may not be tuned to known

vulnerabilities
F t it iti l t– Focus on most security-critical components

• No access to a community for learning
• Red Team has access to all ClearViewRed Team has access to all ClearView

materials
– Source code, documents, learned invariants, …

ClearView was successfulClearView was successful

• Detected all attacks prevented all exploitsDetected all attacks, prevented all exploits
• For 7/10 vulnerabilities, generated a patch

that maintained functionalitythat maintained functionality
– No observable deviation from desired behavior

Aft f 4 9 i t d 5 4 tt k– After an average of 4.9 minutes and 5.4 attacks
• Handled polymorphic attack variants
• Handled simultaneous & intermixed attacks
• No false positivesNo false positives
• Low overhead for detection & repair

3 un-repaired vulnerabilities3 un repaired vulnerabilities

Consequence: Application crashes whenConsequence: Application crashes when
attacked. No exploit occurs.

1. ClearView was mis-configured: didn’t try
repairs in all procedures on the stackrepairs in all procedures on the stack

2. Learning suite was too small: a needed
constraint was not statistically significantconstraint was not statistically significant

3. A needed constraint was not built into
DaikonDaikon

OutlineOutline

• OverviewOverview
• Learning normal behavior

L i tt k b h i• Learning attack behavior
• Repair: propose and evaluate patches
• Evaluation: adversarial Red Team exercise
• ConclusionConclusion

LimitationsLimitations

ClearView might fail to repair an error:ClearView might fail to repair an error:
– Only fixes errors for which a detector exists
– Daikon might not learn a needed constraintDaikon might not learn a needed constraint
– Predictive constraint may be too far from error
– Built-in repairs may not be sufficientp y

ClearView might degrade the application:
– Patch may impair functionalityy p y
– Attacker may subvert patch
– Malicious nodes may induce bad patchesy p

Bottom line: Red Team tried unsuccessfully

Related workRelated work

• Attack detection: ours are mostly standardAttack detection: ours are mostly standard
– Distributed: Vigilante [Costa], live monitoring

[Kıcıman], statistical bug isolation [Liblit]
L i• Learning
– FSMs of system calls for anomaly detection

Invariants: [Lin] [Demsky] Gibraltar [Baliga]– Invariants: [Lin], [Demsky], Gibraltar [Baliga]
– System configuration: FFTV [Lorenzoli],

Dimmunix [Jula][]
• Repair & failure tolerance

– Checkpoint and replay: Rx [Qin], microreboot
[C d][Candea]

– Failure-oblivious [Rinard], ASSURE [Sidiroglou]

CreditsCredits

• Saman Amarasinghe • Jeff PerkinsSaman Amarasinghe
• Jonathan Bachrach
• Michael Carbin

Jeff Perkins
• Martin Rinard
• Frank SherwoodMichael Carbin

• Michael Ernst
• Sung Kim

Frank Sherwood
• Stelios Sidiroglou
• Greg Sullivan• Sung Kim

• Samuel Larsen
• Carlos Pacheco

• Greg Sullivan
• Weng-Fai Wong
• Yoav Zibin• Carlos Pacheco • Yoav Zibin

Subcontractor: Determina, Inc.
Funding: DARPA (PM: Lee Badger)
Red Team: SPARTA, Inc.

ContributionsContributions

ClearView: framework for patch generationClearView: framework for patch generation
– Pluggable detection, learning, repair

1 Protects against unknown vulnerabilities1. Protects against unknown vulnerabilities
– Learns from success
– Learns from failure: what, where, howLearns from failure: what, where, how
– Learning focuses effort where it is needed

2 Preserves functionality: repairs the2. Preserves functionality: repairs the
vulnerability

3 Commercial software: Windows binaries3. Commercial software: Windows binaries
Evaluation via a Red Team exercise

