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Problem: Your code has bugs
and vulnerabilities

» Attack detectors exist
— Code injection, memory errors (buffer overrun)

 Reaction:

— Crash the application
* Loss of data
« Overhead of restart
« Attack recurs
* Denial of service

— Automatically patch the application



ClearView:
Security for legacy software

Requirements:

1. Protect against unknown vulnerabilities
2. Preserve functionality

3. Commercial & legacy software



1. Unknown vulnerabilities

* Proactively prevent attacks via unknown
vulnerabilities
— “Zero-day exploits”
— No pre-generated signatures
— No hard-coded fixes
— No time for human reaction
— Works for bugs as well as attacks



2. Preserve functionality

* Maintain continuity: application
continues to operate despite attacks
* For applications that require high availability

— Important for mission-critical applications
— Web servers, air traffic control, communications

* Technique: create a patch
(repair the application)
— Patching is a valuable option for your toolbox



3. Commercial/legacy software

* No modification to source or executables

* No cooperation required from developers
— Cannot assume built-in survivability features
— No source information (no debug symbols)

« x86 Windows binaries



L earn from success and fallure

 Normal executions show what the application
IS supposed to do

« Each attack (or failure) provides information
about the underlying vulnerability

* Repairs improve over time
— Eventually, the attack is rendered harmless
— Similar to an immune system

» Detect all attacks (of given types)

— Prevent negative consequences
— First few attacks may crash the application



normal
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all executions

Detect, learn, repair
[Lin & Ernst 2003]
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A deployment of ClearView

Community machines
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Learning normal behavior

Observe normal behavior
Generalize observed behavior
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Attack detection & suppression

Community machines
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Learning attack behavior

Community machines

What was the effect of the attack? — N —
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Repalr
Propose a set of patches for each Community machines
behavior that predicts the attack
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Repalir

Distribute patches to the community
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Repalr

Evaluate patches Community machines
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Repalir

Redistribute the best patches
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Overview

Learning normal behavior

Learning attack behavior

Repair. propose and evaluate patches
Evaluation: adversarial Red Team exercise
Conclusion




Learning normal behavior
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Dynamic invariant detection

« Daikon generalizes observed program executions

Candidate constraints: Remaining candidates:
copy_len < buff_size Observation: copy_len < buff_size
copy_len < buff _size copy_len: 22 copy_len < buff _size
copy_len = buff_size buff _size: 42 copy—ten=buff—size
copy_len = buff _size copyr—eR=hut—Ssze
copy_len > buff size — =————————————l eopytersFbui—size
copy_len # buff_size copy_len # buff_size

« Many optimizations for accuracy and speed
— Data structures, code analysis, statistical tests, ...

« We further enhanced the technique



Quality of inference results

Not sound

— Overfitting if observed executions are not representative
Not complete

— Templates are not exhaustive

Useful!

Unsoundness is not a hindrance

— Does not affect attack detection

— For repair, mitigated by the correlation step
— Continued learning improves results
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Detecting attacks (or bugs)

Goal: detect problems close to their source

Code injection (Determina Memory Firewall)

— Triggers if control jumps to code that was not
In the original executable

Memory corruption (Heap Guard)
— Triggers if sentinel values are overwritten

These have low overhead and no false
positives

Other detectors are possible



Learning from failures

Each attack provides information about the
underlying vulnerability
— That it exists
— Where it can be exploited
— How the exploit operates
— What repairs are successful



Attack detection & suppression

Community machines
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Learning attack behavior
Where did the attack happen?
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Detector maintains
a shadow call stack
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Learning attack behavior

Extra checking in attacked code
Check the learned constraints
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Learning attack behavior

Community machines
What was the effect of the attack? — N —
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Correlating attacks & constraints

Check constraints only at attack sites
— Low overhead

A constraint is predictive of an attack if:
— The constraint is violated iff the attack occurs

Create repairs for each predictive constraint
— Re-establish normal behavior
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Repalir

Distribute patches to the community
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Attack example

Target: JavaScript system routine (written in C++)
— Casts its argument to a C++ object, calls a virtual method
— Does not check type of the argument

Attack supplies an “object” whose virtual table
points to attacker-supplied code

Predictive constraint at the method call:

— JSRI address target is one of a known set
Possible repairs:

— Call one of the known valid methods
— Skip over the call
— Return early



Repalr example

if (! (copy len = buff size))
copy len = buff size;

* The repair checks the predictive constraint
— |f constraint is not violated, no need to repair
— If constraint is violated, an attack is (probably) underway

* The patch does not depend on the detector
— Should fix the problem before the detector is triggered

* Repair is not identical to what a human would write
— Unacceptable to wait for human response



Example constraints & repairs

vV, <V,
if (VY (viSvy)) vy, = v,
V2=>C
if (Y (vze)) v = ¢,
V €{Cy, Cy, C3 }
if (Y (v==c; || v==c, || v==c3)) Vv = c;;
Return from enclosing procedure
if ('(.)) return;
Modify a use: convert “call *v' to
if (..) ,call *v;

% Constraint on v (not negated)



Evaluating a patch

* In-field evaluation
— No attack detector is triggered

— No other behavior deviations
« E.g., crash, application invariants

« Pre-validation, before distributing the patch:
* Replay the attack

+ No need to wait for a second attack

+ Exactly reproduce the problem

— Expensive to record log; log terminates abruptly
— Need to prevent irrevocable effects

— Delays distribution of good patches

* Run the program’s test suite

— May be too sensitive
— Not available for commercial software
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Red Team

 Red Team attempts to break our system
— Hired by DARPA; 10 engineers

 Red Team created 10 Firefox exploits
— Each exploit is a webpage
— Firefox executes arbitrary code

— Malicious JavaScript, GC errors, stack
smashing, heap buffer overflow, uninitialized
memory



Rules of engagement

 Firefox 1.0

— ClearView may not be tuned to known
vulnerabilities

— Focus on most security-critical components
« No access to a community for learning

e Red T_eam has access to all ClearView
materials

— Source code, documents, learned invariants, ...



ClearView was successful

Detected all attacks, prevented all exploits

For 7/10 vulnerabilities, generated a patch
that maintained functionality

— No observable deviation from desired behavior
— After an average of 4.9 minutes and 5.4 attacks

Handled polymorphic attack variants
Handled simultaneous & intermixed attacks
No false positives

Low overhead for detection & repair




3 un-repaired vulnerabilities

Consequence: Application crashes when
attacked. No exploit occurs.

1. ClearView was mis-configured: didn't try
repairs in all procedures on the stack

2. Learning suite was too small: a needed
constraint was not statistically significant

3. A needed constraint was not built into
Daikon
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Limitations

ClearView might fail to repair an error:
— Only fixes errors for which a detector exists
— Daikon might not learn a needed constraint
— Predictive constraint may be too far from error
— Built-in repairs may not be sufficient

ClearView might degrade the application:
— Patch may impair functionality
— Attacker may subvert patch
— Malicious nodes may induce bad patches

Bottom line: Red Team tried unsuccessfully



Related work

» Attack detection: ours are mostly standard

— Distributed: Vigilante [Costa], live monitoring
[Kiciman], statistical bug isolation [Liblit]

* Learning
— FSMs of system calls for anomaly detection
— Invariants: [Lin], [Demsky], Gibraltar [Baliga]

— System configuration: FFTV [Lorenzoli],
Dimmunix [Jula]

* Repair & failure tolerance

— Checkpoint and replay: Rx [Qin], microreboot
[Candea]

— Failure-oblivious [Rinard], ASSURE [Sidiroglou]
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Contributions

ClearView: framework for patch generation
— Pluggable detection, learning, repair

1. Protects against unknown vulnerabilities
— Learns from success
— Learns from failure: what, where, how
— Learning focuses effort where it is needed

2. Preserves functionality: repairs the
vulnerabillity

3. Commercial software: Windows binaries
Evaluation via a Red Team exercise




