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The problem: unsafe array indexing
● In unsafe languages (C): buffer overflow!

● In managed languages (Java, C#, etc.): exception, program 
crashes
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The state of the art
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The Index Checker 
(this talk)



Problems with complex analyses

- false positives

- annotation burden

- complex analyses are hard to predict
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Fundamental problem is complex analyses!
Insight:
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Cooperating simple analyses
Solve all three problems:
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Cooperating simple analyses
Solve all three problems:
● simpler implementation → fewer false positives
● simpler abstractions → easier to write annotations
● simpler analysis → simpler to predict
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Proving an array access safe

T[] a = …;
int i = …;
... a[i] ...

We need to show that:
● i is an index for a
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Proving an array access safe

T[] a = …;
int i = …;
... a[i] ...

We need to show that:
● i is an index for a
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A type system for lower bounds

T

↑

i ≥ -1
↑

↑

i ≥ 0

i ≥ 1

@LowerBoundUnknown int i

↑

@GTENegativeOne int i

↑

↑

@NonNegative int i

@Positive int i
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A type system for upper bounds

if (i >= 0 && i < a.length) {
a[i] = ...

}
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A type system for upper bounds

if (i >= 0 && i < a.length) {
a[i] = ...

}
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i < a.length @LTLengthOf(“a”) int i



Type systems

Linear inequalities
i < j

Minimum lengths
a.length > 10

Negative indices
| i | < a.length

Lower bounds
i ≥ 0

Equal lengths
a.length = b.length

Upper bounds
i < a.length
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A type system for minimum array lengths

if (a.length >= 3) {
a[2] = ...;

}
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A type system for minimum array lengths

if (a.length >= 3) {
a[2] = ...;

}
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a.length ≥ i T @MinLen(i) [] a



Evaluation
Three case studies:
● Google Guava (two packages)
● JFreeChart
● plume-lib

Comparison to existing tools:
● FindBugs, KeY, Clousot
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Case Studies

Guava JFreeChart plume-lib Total

Lines of code 10,694 94,233 14,586 119,503

Bugs found 5 64 20 89

Annotations 510 2,938 241 3,689

False positives 138 386 43 567

Java casts 222 2,740 219 3,181
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Comparison to other tools: confirmed bugs

Tool Index Checker FindBugs KeY Clousot

True Positives

False Negatives

Approach Types Bug finder Verif. w/ solver Abs. interpret.

Time (100k LoC)
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Comparison to other tools: confirmed bugs

Tool Index Checker FindBugs KeY Clousot

True Positives 18/18 0/18 9/18 16/18

False Negatives 0/18 18/18 1/18 2/18

Approach Types Bug finder Verif. w/ solver Abs. interpret.

Time (100k LoC) ~10 minutes ~1 minute cannot scale ~200 minutes
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Using the Index Checker
● Distributed with Checker Framework

www.checkerframework.org
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Contributions
● A methodology: simple, cooperative type systems

● An analysis: abstractions for array indexing

● An implementation and evaluation for Java

● Verifying the absence of array bounds errors in real 
codebases (and finding bugs in the process!)
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