
Lightweight Verification of
Array Indexing

Martin Kellogg*, Vlastimil Dort**, Suzanne Millstein*,
Michael D. Ernst*

* University of Washington, Seattle
** Charles University, Prague

The problem: unsafe array indexing
● In unsafe languages (C): buffer overflow!

● In managed languages (Java, C#, etc.): exception, program
crashes

2

The state of the art

3

Strength of guarantees

Practical for developers

The state of the art

4

Strength of guarantees

Practical for developers

Coq
KeY

Clousot

The state of the art

5

Strength of guarantees

Practical for developers

Coq
KeY

Clousot

FindBugs
Coverity

The state of the art

6

Strength of guarantees

Practical for developers

Coq
KeY

Clousot

FindBugs
Coverity

The Index Checker
(this talk)

Problems with complex analyses

- false positives

- annotation burden

- complex analyses are hard to predict
7

Problems with complex analyses

- false positives
● bounds checking is hard → complex analysis
● complex analysis → harder to implement
● harder to implement → more false positives

- annotation burden

- complex analyses are hard to predict
8

Problems with complex analyses

- false positives
● bounds checking is hard → complex analysis
● complex analysis → harder to implement
● harder to implement → more false positives

- annotation burden
● complex analysis → complex annotations

- complex analyses are hard to predict
9

Problems with complex analyses

- false positives
● bounds checking is hard → complex analysis
● complex analysis → harder to implement
● harder to implement → more false positives

- annotation burden
● complex analysis → complex annotations

- complex analyses are hard to predict
10

Fundamental problem is complex analyses!
Insight:

11

Cooperating simple analyses
Solve all three problems:

12

Cooperating simple analyses
Solve all three problems:
● simpler implementation → fewer false positives

13

Cooperating simple analyses
Solve all three problems:
● simpler implementation → fewer false positives
● simpler abstractions → easier to write annotations

14

Cooperating simple analyses
Solve all three problems:
● simpler implementation → fewer false positives
● simpler abstractions → easier to write annotations
● simpler analysis → simpler to predict

15

Proving an array access safe

T[] a = …;
int i = …;
... a[i] ...

We need to show that:
● i is an index for a

16

Proving an array access safe

T[] a = …;
int i = …;
... a[i] ...

We need to show that:
● i is an index for a
● i ≥ 0
● i < a.length 17

Proving an array access safe

T[] a = …;
int i = …;
... a[i] ...

We need to show that:
● i is an index for a
● i ≥ 0 A lower bound on i
● i < a.length An upper bound on i 18

A type system for lower bounds

T

↑

i ≥ -1
↑

↑

i ≥ 0

i ≥ 1

@LowerBoundUnknown int i

↑

@GTENegativeOne int i

↑

↑

@NonNegative int i

@Positive int i
19

A type system for lower bounds

T

↑

i ≥ -1
↑

↑

i ≥ 0

i ≥ 1

@LowerBoundUnknown int i

↑

@GTENegativeOne int i

↑

↑

@NonNegative int i

@Positive int i
20

A type system for upper bounds

if (i >= 0 && i < a.length) {
a[i] = ...

}

21

A type system for upper bounds

if (i >= 0 && i < a.length) {
a[i] = ...

}

22

i < a.length @LTLengthOf(“a”) int i

Type systems

Linear inequalities
i < j

Minimum lengths
a.length > 10

Negative indices
| i | < a.length

Lower bounds
i ≥ 0

Equal lengths
a.length = b.length

Upper bounds
i < a.length

23

Type systems

Linear inequalities
i < j

Minimum lengths
a.length > 10

Negative indices
| i | < a.length

Lower bounds
i ≥ 0

Equal lengths
a.length = b.length

Upper bounds
i < a.length

24

A type system for minimum array lengths

if (a.length >= 3) {
a[2] = ...;

}

25

A type system for minimum array lengths

if (a.length >= 3) {
a[2] = ...;

}

26

a.length ≥ i T @MinLen(i) [] a

Evaluation
Three case studies:
● Google Guava (two packages)
● JFreeChart
● plume-lib

Comparison to existing tools:
● FindBugs, KeY, Clousot

27

Case Studies

Guava JFreeChart plume-lib Total

Lines of code 10,694 94,233 14,586 119,503

Bugs found 5 64 20 89

Annotations 510 2,938 241 3,689

False positives 138 386 43 567

Java casts 222 2,740 219 3,181

28

Comparison to other tools: confirmed bugs

Tool Index Checker FindBugs KeY Clousot

True Positives

False Negatives

Approach Types Bug finder Verif. w/ solver Abs. interpret.

Time (100k LoC)

29

Comparison to other tools: confirmed bugs

Tool Index Checker FindBugs KeY Clousot

True Positives

False Negatives

Approach Types Bug finder Verif. w/ solver Abs. interpret.

Time (100k LoC) ~10 minutes ~1 minute cannot scale ~200 minutes

30

Comparison to other tools: confirmed bugs

Tool Index Checker FindBugs KeY Clousot

True Positives 18/18 0/18 9/18 16/18

False Negatives 0/18 18/18 1/18 2/18

Approach Types Bug finder Verif. w/ solver Abs. interpret.

Time (100k LoC) ~10 minutes ~1 minute cannot scale ~200 minutes

31

Using the Index Checker
● Distributed with Checker Framework

www.checkerframework.org

32

Contributions
● A methodology: simple, cooperative type systems

● An analysis: abstractions for array indexing

● An implementation and evaluation for Java

● Verifying the absence of array bounds errors in real
codebases (and finding bugs in the process!)

33

