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Motivation 

Existing Approaches 

Challenge: High-Dimensionality 

45nm Intel® CoreTM 
i7 Processor 

Simplified SRAM Architecture 
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SRAM DFF 

Subset Simulation (SUS): Continuous Performance Metric 

x : process variation 
Ω : interested failure region 

PF : interested failure rate 
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x Applying SUS 

P1=Pr(x ∈ Ω1)=0.1 

P2=Pr(x ∈ Ω2|x ∈ Ω1)=0.1 

P3=Pr(x ∈ Ω3|x ∈ Ω2)=0.1 

P4=Pr(x ∈ Ω4|x ∈ Ω3)=0.1 

Estimate P1, P2, P3, P4 Estimate PF  

Phase 1: draw random samples from PDF f(x) and estimate P1 = Pr(x ∈ Ω1) 

x1, x2 are generally modeled as independent Normal 
random variables 

Ω1 

0 x1 

x2 

1
SUS G

G Y

NP
N N

=
+

NY : # of yellow points NG : # of green points 

Phase 2: draw random samples from f(x | x ∈ Ω1) and estimate P2 = Pr(x ∈ Ω2 | x ∈ Ω1) 
f(x | x ∈ Ω1) is unknown in advance. Modified Metropolis (MM) algorithm is applied 
to generate random samples that follow f(x | x ∈ Ω1)  
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samples created in Phase 1 

• 45nm CMOS technology 
• 200 independent random variables 
• The delay from CLK→Q is performance of interest 
• 100 95% confidence intervals (CIs) are calculated 

from 100 runs with 5500 simulations in each run 
• The “golden” failure rate is 4.8×10−6 that is 

estimated by MC with 5 million simulations 
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Scaled-Sigma Sampling (SSS): Discrete Performance Metric 
 Idea: it is much easier to estimate PG than PF if s is large enough 

f(x) : original probability density function PF : failure rate by sampling f(x) 
g(x) : scaled probability density function PG : failure rate by sampling g(x) 
σf : σ of f(x) σg : σ of g(x) 
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 Proposed SSS 
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Phase 3: similar to Phase 2 

 Scaling: a large number of replicated components are integrated on the chip 

 Challenge: all the components need to function correctly under large process variations 

 Yield requirement: each component must be extremely robust under process variations 
• The failure event of each component must be rare 

 Time to market: fast statistical tools are highly desired to analyze the rare failure event 

 Idea: find K subsets {Ωk; k = 1, 2, ···, K} in x-space, and estimate the rare failure rate PF 

by the conditional probabilities {Pk; k = 1, 2, ···, K} 

 Brute-force Monte Carlo (MC) [1] 
• Pros: no dimensionality issue 

• Cons: not efficient 

 Importance sampling (IS) [2]: bias the sampling distribution 
• Pros: efficient in low-D space 

• Cons: difficult to find an appropriate biased sampling distribution in high-D space 

 Statistical blockade [3]: classifier based 
• Pros: efficient in low-D space 

• Cons: expensive to construct an accurate classifier in high-D space 

 Deterministic approach [4]: integrate the failure region in the variation space 
• Pros: efficient in low-D space 

• Cons: expensive to accurately describe the failure region in high-D space 

 In the past, rare failure event analysis was mainly focused on SRAM bit cell ← low-D 

 Recently, rare failure event analysis in high-D becomes more and more important 
1. Dynamic SRAM bit cell stability related to peripherals: many transistors from multiple 

SRAM bit cells and their peripheral circuits must be considered 

2. Rare failure event analysis for non-SRAM circuits: e.g., DFF 

 Question: how to estimate these conditional probabilities {Pk; k = 1, 2, ···, K}? 

 Experimental results 
DFF 
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• 45nm CMOS technology 
• 384 independent random variables 
• The output of SA is performance of interest 
• 100 95% confidence intervals (CIs) are calculated 

from 100 runs with 6000 simulations in each run 
• The “golden” failure rate is 1.1×10−6 that is 

estimated by MC with 1 billion simulations 
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The 95% CIs (blue bars) of the DFF example for: 
(a) MNIS [2] and (b) SUS. The red line represents 
the “golden” failure rate. 

The 95% CIs (blue bars) of the SRAM example for: 
(a) MNIS [2] and (b) SSS. The red line represents 
the “golden” failure rate. 

( ) ( ) ( )1 1 2 2f f x f x= ⋅x


	Slide Number 1

