Fast Statistical Analysis of Rare Circult Failure Events in High-Dimensional Variation Space
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45nm Intel® Core™
17 Processor

Motivation

v' Scaling: a large number of replicated components are integrated on the chip
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Process Variation

e The failure event of each component must be rare
v' Time to market: fast statistical tools are highly desired to analyze the rare failure event

Existing Approaches

e Pros: no dimensionality issue

e Cons: not efficient

e Pros: efficient in low-D space

e Pros: efficient in low-D space

e Pros: efficient in low-D space

v" Brute-force Monte Carlo (MC) [1]

v Importance sampling (I1S) [2]: bias the sampling distribution

o Cons: difficult to find an appropriate biased sampling distribution in high-D space

v' Statistical blockade [3]: classifier based

o Cons: expensive to construct an accurate classifier in high-D space

v Deterministic approach [4]: integrate the failure region in the variation space

« Cons: expensive to accurately describe the failure region in high-D space

Challenge: High-Dimensionality

v" In the past, rare failure event analysis was mainly focused on SRAM bit cell < low-D

v" Recently, rare failure event analysis in high-D becomes more and more important
1. Dynamic SRAM bit cell stability related to peripherals: many transistors from multiple
SRAM bit cells and their peripheral circuits must be considered

2. Rare failure event analysis for non-SRAM circuits: e.g., DFF
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v Challenge: all the components need to function correctly under large process variations

v" Yield requirement: each component must be extremely robust under process variations
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/Subset Simulation (SUS): Continuous Performance Metric\

v" ldea: find K subsets {Q,; k=1, 2, ---, K} in X-space, and estimate the rare failure rate P

by the conditional probabilities {P,; k=1, 2, ---, K}

(2, 0Q,2--2Q,;, 2Q, =Q

K
P- =Pr(xe Q) =Pr(xe Q)] [Pr(xeQ,|[xeQ, )=

K
[P
k=1

X . process variation
Q : Interested failure region
Pe : Interested failure rate
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v" Question: how to estimate these conditional probabilities {P,; k=1, 2, -+, K}?

Phase 1: draw random samples from PDF f(x) and estimate P, = Pr(x € Q,)
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Phase 2: draw random samples from f(x | x € Q,) and estimate P, = Pr(x € Q, | X € Q,)
f(x | x € Q) 1s unknown in advance. Modified Metropolis (MM) algorithm is applied
to generate random samples that follow f(x | X € Q,)
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Phase 3: similar to Phase 2
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/ Scaled-Sigma Sampling (SSS): Discrete Performance Metric\

f(X) A

o; . ¢ of f(X)

v Proposed SSS

e 45nm CMOS technology
200 independent random variables
e The delay from CLK—Q is performance of interest

* 100 95% confidence intervals (Cls) are calculated
from 100 runs with 5500 simulations in each run

e The “golden” failure rate is 4.8x10°° that is
estimated by MC with 5 million simulations
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The 95% ClIs (blue bars) of the DFF example for:

(a) MNIS [2] and (b) SUS. The red line represents

v" Idea: it is much easier to estimate P than P

g(x) A

If s 1s large enough

Gg — S'Gf

f(x) : original probability density function P : failure rate by sampling f(x)
g(x) : scaled probability density function
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the “golden” failure rate.
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scaling factor

P : failure rate by sampling g(x)
. o of g(x)

scaled failure rate

e 45nm CMOS technology
384 independent random variables
 The output of SA is performance of interest

* 100 95% confidence intervals (Cls) are calculated
from 100 runs with 6000 simulations in each run

e The “golden” failure rate is 1.1x10°° that is
estimated by MC with 1 billion simulations
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(b) SSS

The 95% Cls (blue bars) of the SRAM example for:

(a) MNIS [2] and (b) SSS. The red line represents

the “golden” failure rate.

nonlinear, variability aware non-Monte-Carlo yield
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